Cargando…

Nanotechnology: Science and Computation

Nanoscale science and computing is becoming a major research area as today's scientists try to understand the processes of natural and biomolecular computing. The field is concerned with the architectures and design of molecular self-assembly, nanostructures and molecular devices, and with unde...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Chen, Junghuei (Editor ), Jonoska, Natasha (Editor ), Rozenberg, Grzegorz (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Natural Computing Series,
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • DNA Nanotechnology - Algorithmic Self-assembly
  • Scaffolded DNA Origami: from Generalized Multicrossovers to Polygonal Networks
  • A Fresh Look at DNA Nanotechnology
  • DNA Nanotechnology: an Evolving Field
  • Self-healing Tile Sets
  • Compact Error-Resilient Computational DNA Tilings
  • Forbidding-Enforcing Conditions in DNA Self-assembly of Graphs
  • Codes for DNA Nanotechnology
  • Finding MFE Structures Formed by Nucleic Acid Strands in a Combinatorial Set
  • Involution Solid Codes
  • Test Tube Selection of Large Independent Sets of DNA Oligonucleotides
  • DNA Nanodevices
  • DNA-Based Motor Work at Bell Laboratories
  • Nanoscale Molecular Transport by Synthetic DNA Machines
  • Electronics, Nanowire and DNA
  • A Supramolecular Approach to Metal Array Programming Using Artificial DNA
  • Multicomponent Assemblies Including Long DNA and Nanoparticles - An Answer for the Integration Problem?
  • Molecular Electronics: from Physics to Computing
  • Other Bio-molecules in Self-assembly
  • Towards an Increase of the Hierarchy in the Construction of DNA-Based Nanostructures Through the Integration of Inorganic Materials
  • Adding Functionality to DNA Arrays: the Development of Semisynthetic DNA-Protein Conjugates
  • Bacterial Surface Layer Proteins: a Simple but Versatile Biological Self-assembly System in Nature
  • Biomolecular Computational Models
  • Computing with Hairpins and Secondary Structures of DNA
  • Bottom-up Approach to Complex Molecular Behavior
  • Aqueous Computing: Writing on Molecules Dissolved in Water
  • Computations Inspired by Cells
  • Turing Machines with Cells on the Tape
  • Insights into a Biological Computer: Detangling Scrambled Genes in Ciliates
  • Modelling Simple Operations for Gene Assembly.