Cargando…

List Decoding of Error-Correcting Codes Winning Thesis of the 2002 ACM Doctoral Dissertation Competition /

How can one exchange information e?ectively when the medium of com- nication introduces errors? This question has been investigated extensively starting with the seminal works of Shannon (1948) and Hamming (1950), and has led to the rich theory of "error-correcting codes". This theory has...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Guruswami, Venkatesan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Lecture Notes in Computer Science, 3282
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-30180-6
003 DE-He213
005 20220114091123.0
007 cr nn 008mamaa
008 110116s2005 gw | s |||| 0|eng d
020 |a 9783540301806  |9 978-3-540-30180-6 
024 7 |a 10.1007/b104335  |2 doi 
050 4 |a QA76.9.D35 
050 4 |a Q350-390 
072 7 |a UMB  |2 bicssc 
072 7 |a GPF  |2 bicssc 
072 7 |a COM031000  |2 bisacsh 
072 7 |a UMB  |2 thema 
072 7 |a GPF  |2 thema 
082 0 4 |a 005.73  |2 23 
082 0 4 |a 003.54  |2 23 
100 1 |a Guruswami, Venkatesan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a List Decoding of Error-Correcting Codes  |h [electronic resource] :  |b Winning Thesis of the 2002 ACM Doctoral Dissertation Competition /  |c by Venkatesan Guruswami. 
250 |a 1st ed. 2005. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a XX, 352 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 1611-3349 ;  |v 3282 
505 0 |a 1 Introduction -- 1 Introduction -- 2 Preliminaries and Monograph Structure -- I Combinatorial Bounds -- 3 Johnson-Type Bounds and Applications to List Decoding -- 4 Limits to List Decodability -- 5 List Decodability Vs. Rate -- II Code Constructions and Algorithms -- 6 Reed-Solomon and Algebraic-Geometric Codes -- 7 A Unified Framework for List Decoding of Algebraic Codes -- 8 List Decoding of Concatenated Codes -- 9 New, Expander-Based List Decodable Codes -- 10 List Decoding from Erasures -- III Applications -- Interlude -- III Applications -- 11 Linear-Time Codes for Unique Decoding -- 12 Sample Applications Outside Coding Theory -- 13 Concluding Remarks -- A GMD Decoding of Concatenated Codes. 
520 |a How can one exchange information e?ectively when the medium of com- nication introduces errors? This question has been investigated extensively starting with the seminal works of Shannon (1948) and Hamming (1950), and has led to the rich theory of "error-correcting codes". This theory has traditionally gone hand in hand with the algorithmic theory of "decoding" that tackles the problem of recovering from the errors e?ciently. This thesis presents some spectacular new results in the area of decoding algorithms for error-correctingcodes. Speci?cally,itshowshowthenotionof"list-decoding" can be applied to recover from far more errors, for a wide variety of err- correcting codes, than achievable before. A brief bit of background: error-correcting codes are combinatorial str- tures that show how to represent (or "encode") information so that it is - silient to a moderate number of errors. Speci?cally, an error-correcting code takes a short binary string, called the message, and shows how to transform it into a longer binary string, called the codeword, so that if a small number of bits of the codewordare ?ipped, the resulting string does not look like any other codeword. The maximum number of errorsthat the code is guaranteed to detect, denoted d, is a central parameter in its design. A basic property of such a code is that if the number of errors that occur is known to be smaller than d/2, the message is determined uniquely. This poses a computational problem,calledthedecodingproblem:computethemessagefromacorrupted codeword, when the number of errors is less than d/2. 
650 0 |a Data structures (Computer science). 
650 0 |a Information theory. 
650 0 |a Coding theory. 
650 0 |a Algorithms. 
650 0 |a Computer science. 
650 0 |a Computer science-Mathematics. 
650 0 |a Discrete mathematics. 
650 1 4 |a Data Structures and Information Theory. 
650 2 4 |a Coding and Information Theory. 
650 2 4 |a Algorithms. 
650 2 4 |a Models of Computation. 
650 2 4 |a Discrete Mathematics in Computer Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540805915 
776 0 8 |i Printed edition:  |z 9783540240518 
830 0 |a Lecture Notes in Computer Science,  |x 1611-3349 ;  |v 3282 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b104335  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)