Cargando…

Algebraic Theory of Locally Nilpotent Derivations

This book explores the theory and application of locally nilpotent derivations, which is a subject of growing interest and importance not only among those in commutative algebra and algebraic geometry, but also in fields such as Lie algebras and differential equations. The author provides a unified...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Freudenburg, Gene (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Encyclopaedia of Mathematical Sciences ; 136
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-29523-5
003 DE-He213
005 20220113114754.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540295235  |9 978-3-540-29523-5 
024 7 |a 10.1007/978-3-540-29523-5  |2 doi 
050 4 |a QA251.3 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512.44  |2 23 
100 1 |a Freudenburg, Gene.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Algebraic Theory of Locally Nilpotent Derivations  |h [electronic resource] /  |c by Gene Freudenburg. 
246 3 |a Invariant Theory and Algebraic Transformation Groups VII 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XI, 261 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Encyclopaedia of Mathematical Sciences ;  |v 136 
505 0 |a First Principles -- Further Properties of Locally Nilpotent Derivations -- Polynomial Rings -- Dimension Two -- Dimension Three -- Linear Actions of Unipotent Groups -- Non-Finitely Generated Kernels -- Algorithms -- The Makar-Limanov and Derksen Invariants -- Slices, Embeddings and Cancellation -- Epilogue. 
520 |a This book explores the theory and application of locally nilpotent derivations, which is a subject of growing interest and importance not only among those in commutative algebra and algebraic geometry, but also in fields such as Lie algebras and differential equations. The author provides a unified treatment of the subject, beginning with 16 First Principles on which the entire theory is based. These are used to establish classical results, such as Rentschler's Theorem for the plane, right up to the most recent results, such as Makar-Limanov's Theorem for locally nilpotent derivations of polynomial rings. Topics of special interest include: progress in the dimension three case, finiteness questions (Hilbert's 14th Problem), algorithms, the Makar-Limanov invariant, and connections to the Cancellation Problem and the Embedding Problem. The reader will also find a wealth of pertinent examples and open problems and an up-to-date resource for research. . 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Algebraic geometry. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 1 4 |a Commutative Rings and Algebras. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Topological Groups and Lie Groups. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642067327 
776 0 8 |i Printed edition:  |z 9783540816942 
776 0 8 |i Printed edition:  |z 9783540295211 
830 0 |a Encyclopaedia of Mathematical Sciences ;  |v 136 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-29523-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)