|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-540-29021-6 |
003 |
DE-He213 |
005 |
20220116135557.0 |
007 |
cr nn 008mamaa |
008 |
100301s2006 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540290216
|9 978-3-540-29021-6
|
024 |
7 |
|
|a 10.1007/3-540-29021-4
|2 doi
|
050 |
|
4 |
|a QA319-329.9
|
072 |
|
7 |
|a PBKF
|2 bicssc
|
072 |
|
7 |
|a MAT037000
|2 bisacsh
|
072 |
|
7 |
|a PBKF
|2 thema
|
082 |
0 |
4 |
|a 515.7
|2 23
|
100 |
1 |
|
|a Da Prato, Giuseppe.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
3 |
|a An Introduction to Infinite-Dimensional Analysis
|h [electronic resource] /
|c by Giuseppe Da Prato.
|
250 |
|
|
|a 1st ed. 2006.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2006.
|
300 |
|
|
|a X, 208 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Universitext,
|x 2191-6675
|
505 |
0 |
|
|a Gaussian measures in Hilbert spaces -- The Cameron-Martin formula -- Brownian motion -- Stochastic perturbations of a dynamical system -- Invariant measures for Markov semigroups -- Weak convergence of measures -- Existence and uniqueness of invariant measures -- Examples of Markov semigroups -- L2 spaces with respect to a Gaussian measure -- Sobolev spaces for a Gaussian measure -- Gradient systems.
|
520 |
|
|
|a In this revised and extended version of his course notes from a 1-year course at Scuola Normale Superiore, Pisa, the author provides an introduction - for an audience knowing basic functional analysis and measure theory but not necessarily probability theory - to analysis in a separable Hilbert space of infinite dimension. Starting from the definition of Gaussian measures in Hilbert spaces, concepts such as the Cameron-Martin formula, Brownian motion and Wiener integral are introduced in a simple way. These concepts are then used to illustrate some basic stochastic dynamical systems (including dissipative nonlinearities) and Markov semi-groups, paying special attention to their long-time behavior: ergodicity, invariant measure. Here fundamental results like the theorems of Prokhorov, Von Neumann, Krylov-Bogoliubov and Khas'minski are proved. The last chapter is devoted to gradient systems and their asymptotic behavior.
|
650 |
|
0 |
|a Functional analysis.
|
650 |
|
0 |
|a Probabilities.
|
650 |
|
0 |
|a Differential equations.
|
650 |
1 |
4 |
|a Functional Analysis.
|
650 |
2 |
4 |
|a Probability Theory.
|
650 |
2 |
4 |
|a Differential Equations.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540815907
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540290209
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642421686
|
830 |
|
0 |
|a Universitext,
|x 2191-6675
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/3-540-29021-4
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|