Cargando…

Neural Networks Methodology and Applications /

Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, m...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dreyfus, Gérard (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-28847-3
003 DE-He213
005 20220120020645.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540288473  |9 978-3-540-28847-3 
024 7 |a 10.1007/3-540-28847-3  |2 doi 
050 4 |a Q295 
072 7 |a GPFC  |2 bicssc 
072 7 |a SCI055000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 530.1  |2 23 
100 1 |a Dreyfus, Gérard.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Neural Networks  |h [electronic resource] :  |b Methodology and Applications /  |c by Gérard Dreyfus. 
250 |a 1st ed. 2005. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a XVIII, 498 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Neural Networks: An Overview -- Modeling with Neural Networks: Principles and Model Design Methodology -- Modeling Metholodgy: Dimension Reduction and Resampling Methods -- Neural Identification of Controlled Dynamical Systems and Recurrent Networks -- Closed-Loop Control Learning -- Discrimination -- Self-Organizing Maps and Unsupervised Classification -- Neural Networks without Training for Optimization. 
520 |a Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts ands seemlessly edited to present a coherent and comprehensive, yet not redundant, practically-oriented introduction. 
650 0 |a System theory. 
650 0 |a Mathematical physics. 
650 0 |a Engineering. 
650 0 |a Computer science-Mathematics. 
650 0 |a Telecommunication. 
650 0 |a Artificial intelligence. 
650 1 4 |a Complex Systems. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Technology and Engineering. 
650 2 4 |a Mathematical Applications in Computer Science. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Artificial Intelligence. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540803621 
776 0 8 |i Printed edition:  |z 9783642061875 
776 0 8 |i Printed edition:  |z 9783540229803 
856 4 0 |u https://doi.uam.elogim.com/10.1007/3-540-28847-3  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)