Cargando…

The Variational Bayes Method in Signal Processing

This is the first book-length treatment of the Variational Bayes (VB) approximation in signal processing. It has been written as a self-contained, self-learning guide for academic and industrial research groups in signal processing, data analysis, machine learning, identification and control. It rev...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Šmídl, Václav (Autor), Quinn, Anthony (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Signals and Communication Technology,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-28820-6
003 DE-He213
005 20220126105221.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 |a 9783540288206  |9 978-3-540-28820-6 
024 7 |a 10.1007/3-540-28820-1  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Šmídl, Václav.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Variational Bayes Method in Signal Processing  |h [electronic resource] /  |c by Václav Šmídl, Anthony Quinn. 
250 |a 1st ed. 2006. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2006. 
300 |a XX, 228 p. 65 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Signals and Communication Technology,  |x 1860-4870 
505 0 |a Bayesian Theory -- Off-line Distributional Approximations and the Variational Bayes Method -- Principal Component Analysis and Matrix Decompositions -- Functional Analysis of Medical Image Sequences -- On-line Inference of Time-Invariant Parameters -- On-line Inference of Time-Variant Parameters -- The Mixture-based Extension of the AR Model (MEAR) -- Concluding Remarks. 
520 |a This is the first book-length treatment of the Variational Bayes (VB) approximation in signal processing. It has been written as a self-contained, self-learning guide for academic and industrial research groups in signal processing, data analysis, machine learning, identification and control. It reviews the VB distributional approximation, showing that tractable algorithms for parametric model identification can be generated in off-line and on-line contexts. Many of the principles are first illustrated via easy-to-follow scalar decomposition problems. In later chapters, successful applications are found in factor analysis for medical image sequences, mixture model identification and speech reconstruction. Results with simulated and real data are presented in detail. The unique development of an eight-step "VB method", which can be followed in all cases, enables the reader to develop a VB inference algorithm from the ground up, for their own particular signal or image model. 
650 0 |a Signal processing. 
650 0 |a Telecommunication. 
650 0 |a Statistics . 
650 0 |a Probabilities. 
650 0 |a Application software. 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a Statistics in Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
650 2 4 |a Probability Theory. 
650 2 4 |a Computer and Information Systems Applications. 
700 1 |a Quinn, Anthony.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642066900 
776 0 8 |i Printed edition:  |z 9783540815433 
776 0 8 |i Printed edition:  |z 9783540288190 
830 0 |a Signals and Communication Technology,  |x 1860-4870 
856 4 0 |u https://doi.uam.elogim.com/10.1007/3-540-28820-1  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)