Cargando…

Numerical Methods for General and Structured Eigenvalue Problems

The purpose of this book is to describe recent developments in solving eig- value problems, in particular with respect to the QR and QZ algorithms as well as structured matrices. Outline Mathematically speaking, the eigenvalues of a square matrix A are the roots of its characteristic polynomial det(...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kressner, Daniel (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Lecture Notes in Computational Science and Engineering, 46
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-28502-1
003 DE-He213
005 20230810201230.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540285021  |9 978-3-540-28502-1 
024 7 |a 10.1007/3-540-28502-4  |2 doi 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
100 1 |a Kressner, Daniel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Numerical Methods for General and Structured Eigenvalue Problems  |h [electronic resource] /  |c by Daniel Kressner. 
250 |a 1st ed. 2005. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a XIV, 258 p. 32 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computational Science and Engineering,  |x 2197-7100 ;  |v 46 
505 0 |a The QR Algorithm -- The QZ Algorithm -- The Krylov-Schur Algorithm -- Structured Eigenvalue Problems -- Background in Control Theory Structured Eigenvalue Problems -- Software. 
520 |a The purpose of this book is to describe recent developments in solving eig- value problems, in particular with respect to the QR and QZ algorithms as well as structured matrices. Outline Mathematically speaking, the eigenvalues of a square matrix A are the roots of its characteristic polynomial det(A??I). An invariant subspace is a linear subspace that stays invariant under the action of A. In realistic applications, it usually takes a long process of simpli?cations, linearizations and discreti- tions before one comes up with the problem of computing the eigenvalues of a matrix. In some cases, the eigenvalues have an intrinsic meaning, e.g., for the expected long-time behavior of a dynamical system; in others they are just meaningless intermediate values of a computational method. The same applies to invariant subspaces, which for example can describe sets of initial states for which a dynamical system produces exponentially decaying states. Computing eigenvalues has a long history, dating back to at least 1846 when Jacobi [172] wrote his famous paper on solving symmetric eigenvalue problems. Detailed historical accounts of this subject can be found in two papers by Golub and van der Vorst [140, 327]. 
650 0 |a Mathematics  |x Data processing. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 1 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Systems Theory, Control . 
650 2 4 |a Computational Science and Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540807636 
776 0 8 |i Printed edition:  |z 9783540245469 
830 0 |a Lecture Notes in Computational Science and Engineering,  |x 2197-7100 ;  |v 46 
856 4 0 |u https://doi.uam.elogim.com/10.1007/3-540-28502-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)