Cargando…

Automatic Differentiation: Applications, Theory, and Implementations

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Bücker, H. Martin (Editor ), Corliss, George (Editor ), Hovland, Paul (Editor ), Naumann, Uwe (Editor ), Norris, Boyana (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006.
Edición:1st ed. 2006.
Colección:Lecture Notes in Computational Science and Engineering, 50
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Perspectives on Automatic Differentiation: Past, Present, and Future?
  • Backwards Differentiation in AD and Neural Nets: Past Links and New Opportunities
  • Solutions of ODEs with Removable Singularities
  • Automatic Propagation of Uncertainties
  • High-Order Representation of Poincarée Maps
  • Computation of Matrix Permanent with Automatic Differentiation
  • Computing Sparse Jacobian Matrices Optimally
  • Application of AD-based Quasi-Newton Methods to Stiff ODEs
  • Reduction of Storage Requirement by Checkpointing for Time-Dependent Optimal Control Problems in ODEs
  • Improving the Performance of the Vertex Elimination Algorithm for Derivative Calculation
  • Flattening Basic Blocks
  • The Adjoint Data-Flow Analyses: Formalization, Properties, and Applications
  • Semiautomatic Differentiation for Efficient Gradient Computations
  • Computing Adjoints with the NAGWare Fortran 95 Compiler
  • Transforming Equation-Based Models in Process Engineering
  • Extension of TAPENADE toward Fortran 95
  • A Macro Language for Derivative Definition in ADiMat
  • Simulation and Optimization of the Tevatron Accelerator
  • Periodic Orbits of Hybrid Systems and Parameter Estimation via AD
  • Implementation of Automatic Differentiation Tools for Multicriteria IMRT Optimization
  • Application of Targeted Automatic Differentiation to Large-Scale Dynamic Optimization
  • Automatic Differentiation: A Tool for Variational Data Assimilation and Adjoint Sensitivity Analysis for Flood Modeling
  • Development of an Adjoint for a Complex Atmospheric Model, the ARPS, using TAF
  • Tangent Linear and Adjoint Versions of NASA/GMAO's Fortran 90 Global Weather Forecast Model
  • Efficient Sensitivities for the Spin-Up Phase
  • Streamlined Circuit Device Model Development with fREEDAR® ãnd ADOL-C
  • Adjoint Differentiation of a Structural Dynamics Solver
  • A Bibliography of Automatic Differentiation.