Cargando…

Image Processing Using Pulse-Coupled Neural Networks

This is the first book to explain and demonstrate the tremendous ability of Pulse-Coupled Neural Networks (PCNNs) when applied to the field of image processing. PCNNs and their derivatives are biologically inspired models that are powerful tools for extracting texture, segments, and edges from image...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Lindblad, Thomas (Autor), Kinser, Jason M. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edición:2nd ed. 2005.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-28293-8
003 DE-He213
005 20220112102530.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540282938  |9 978-3-540-28293-8 
024 7 |a 10.1007/3-540-28293-9  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Lindblad, Thomas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Image Processing Using Pulse-Coupled Neural Networks  |h [electronic resource] /  |c by Thomas Lindblad, Jason M. Kinser. 
250 |a 2nd ed. 2005. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a XI, 164 p. 139 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a and Theory -- Theory of Digital Simulation -- Automated Image Object Recognition -- Image Fusion -- Image Texture Processing -- Image Signatures -- Miscellaneous Applications -- Hardware Implementations. 
520 |a This is the first book to explain and demonstrate the tremendous ability of Pulse-Coupled Neural Networks (PCNNs) when applied to the field of image processing. PCNNs and their derivatives are biologically inspired models that are powerful tools for extracting texture, segments, and edges from images. As these attributes form the foundations of most image processing tasks, the use of PCNNs facilitates traditional tasks such as recognition, foveation, and image fusion. PCNN technology has also paved the way for new image processing techniques such as object isolation, spiral image fusion, image signatures, and content-based image searches. This volume contains examples of several image processing applications, as well as a review of hardware implementations. 
650 0 |a Signal processing. 
650 0 |a Surfaces (Technology). 
650 0 |a Thin films. 
650 0 |a Lasers. 
650 0 |a Biophysics. 
650 0 |a Statistics . 
650 0 |a Engineering. 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Surfaces, Interfaces and Thin Film. 
650 2 4 |a Laser. 
650 2 4 |a Biophysics. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Technology and Engineering. 
700 1 |a Kinser, Jason M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642063435 
776 0 8 |i Printed edition:  |z 9783540806509 
776 0 8 |i Printed edition:  |z 9783540242185 
856 4 0 |u https://doi.uam.elogim.com/10.1007/3-540-28293-9  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)