Cargando…

Multiplicative Invariant Theory

Multiplicative invariant theory, as a research area in its own right within the wider spectrum of invariant theory, is of relatively recent vintage. The present text offers a coherent account of the basic results achieved thus far.. Multiplicative invariant theory is intimately tied to integral repr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lorenz, Martin (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Encyclopaedia of Mathematical Sciences ; 135
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-27358-5
003 DE-He213
005 20220126115120.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540273585  |9 978-3-540-27358-5 
024 7 |a 10.1007/b138961  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Lorenz, Martin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Multiplicative Invariant Theory  |h [electronic resource] /  |c by Martin Lorenz. 
250 |a 1st ed. 2005. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a XII, 180 p. 5 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Encyclopaedia of Mathematical Sciences ;  |v 135 
505 0 |a Notations and Conventions -- Groups Acting on Lattices -- Permutation Lattices and Flasque Equivalence -- Multiplicative Actions -- Class Group -- Picard Group -- Multiplicative Invariants of Reflection Groups -- Regularity -- The Cohen-Macaulay Property -- Multiplicative Invariant Fields -- Problems. 
520 |a Multiplicative invariant theory, as a research area in its own right within the wider spectrum of invariant theory, is of relatively recent vintage. The present text offers a coherent account of the basic results achieved thus far.. Multiplicative invariant theory is intimately tied to integral representations of finite groups. Therefore, the field has a predominantly discrete, algebraic flavor. Geometry, specifically the theory of algebraic groups, enters through Weyl groups and their root lattices as well as via character lattices of algebraic tori. Throughout the text, numerous explicit examples of multiplicative invariant algebras and fields are presented, including the complete list of all multiplicative invariant algebras for lattices of rank 2. The book is intended for graduate and postgraduate students as well as researchers in integral representation theory, commutative algebra and, mostly, invariant theory. 
650 0 |a Algebra. 
650 0 |a Algebraic geometry. 
650 1 4 |a Algebra. 
650 2 4 |a Algebraic Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642063589 
776 0 8 |i Printed edition:  |z 9783540806851 
776 0 8 |i Printed edition:  |z 9783540243236 
830 0 |a Encyclopaedia of Mathematical Sciences ;  |v 135 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b138961  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)