Cargando…

Computational Ergodic Theory

Ergodic theory is hard to study because it is based on measure theory, which is a technically difficult subject to master for ordinary students, especially for physics majors. Many of the examples are introduced from a different perspective than in other books and theoretical ideas can be gradually...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Choe, Geon Ho (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Algorithms and Computation in Mathematics ; 13
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-27305-9
003 DE-He213
005 20220117112704.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540273059  |9 978-3-540-27305-9 
024 7 |a 10.1007/b138894  |2 doi 
050 4 |a QA843-871 
072 7 |a GPFC  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 515.39  |2 23 
100 1 |a Choe, Geon Ho.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Computational Ergodic Theory  |h [electronic resource] /  |c by Geon Ho Choe. 
250 |a 1st ed. 2005. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a XX, 453 p. 250 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algorithms and Computation in Mathematics ;  |v 13 
505 0 |a Prerequisites -- Invariant Measures -- The Birkhoff Ergodic Theorem -- The Central Limit Theorem -- More on Ergodicity -- Homeomorphisms of the Circle -- Mod 2 Uniform Distribution -- Entropy -- The Lyapunov Exponent: One-Dimensional Case -- The Lyapunov Exponent: Multidimensional Case -- Stable and Unstable Manifolds -- Recurrence and Entropy -- Recurrence and Dimension -- Data Compression. 
520 |a Ergodic theory is hard to study because it is based on measure theory, which is a technically difficult subject to master for ordinary students, especially for physics majors. Many of the examples are introduced from a different perspective than in other books and theoretical ideas can be gradually absorbed while doing computer experiments. Theoretically less prepared students can appreciate the deep theorems by doing various simulations. The computer experiments are simple but they have close ties with theoretical implications. Even the researchers in the field can benefit by checking their conjectures, which might have been regarded as unrealistic to be programmed easily, against numerical output using some of the ideas in the book. One last remark: The last chapter explains the relation between entropy and data compression, which belongs to information theory and not to ergodic theory. It will help students to gain an understanding of the digital technology that has shaped the modern information society. 
650 0 |a Dynamical systems. 
650 0 |a Mathematical physics. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 1 4 |a Dynamical Systems. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540803966 
776 0 8 |i Printed edition:  |z 9783642062070 
776 0 8 |i Printed edition:  |z 9783540231219 
830 0 |a Algorithms and Computation in Mathematics ;  |v 13 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b138894  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)