Cargando…

Creep Mechanics

Provides a short survey of recent advances in the mathematical modelling of the mechanical behavior of anisotropic solids under creep conditions, including principles, methods, and applications of tensor functions. Some examples for practical use are discussed, as well as experiments by the author t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Betten, Josef (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edición:2nd ed. 2005.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-27202-1
003 DE-He213
005 20220116091712.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540272021  |9 978-3-540-27202-1 
024 7 |a 10.1007/b138749  |2 doi 
050 4 |a TA349-359 
072 7 |a TGMD  |2 bicssc 
072 7 |a SCI096000  |2 bisacsh 
072 7 |a TGMD  |2 thema 
082 0 4 |a 620.105  |2 23 
100 1 |a Betten, Josef.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Creep Mechanics  |h [electronic resource] /  |c by Josef Betten. 
250 |a 2nd ed. 2005. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a XIV, 353 p. 72 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Tensor Notation -- Some Basic Equations of Continuum Mechanics -- Creep Behavior of Isotropic and Anisotropic Materials; Constitutive Equations -- Creep Behavior of Thick-Walled Tubes -- The Creep Potential Hypothesis in Comparison with the Tensor Function Theory -- Damage Mechanics -- Tensorial Generalization of Uniaxial Creep Laws to Multiaxial States of Stress -- Viscous Fluids -- Memory Fluids -- Viscoelastic Materials -- Viscoplastic Materials -- Creep and Damage Experiments. 
520 |a Provides a short survey of recent advances in the mathematical modelling of the mechanical behavior of anisotropic solids under creep conditions, including principles, methods, and applications of tensor functions. Some examples for practical use are discussed, as well as experiments by the author to test the validity of the modelling. The monograph offers an overview of other experimental investigations in creep mechanics. Rules for specifying irreducible sets of tensor invariants, scalar coefficients in constitutive and evolutional equations, and tensorial interpolation methods are also explained. The second edition includes a CD-ROM containing the examples and algorithms in more detail and the appendant figures in color. The text has been re-examined and improved throughout. 
650 0 |a Mechanics, Applied. 
650 0 |a Solids. 
650 0 |a Fluid mechanics. 
650 0 |a Mechanics. 
650 0 |a Computational intelligence. 
650 0 |a Continuum mechanics. 
650 0 |a Materials-Analysis. 
650 1 4 |a Solid Mechanics. 
650 2 4 |a Engineering Fluid Dynamics. 
650 2 4 |a Classical Mechanics. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Continuum Mechanics. 
650 2 4 |a Characterization and Analytical Technique. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540804154 
776 0 8 |i Printed edition:  |z 9783540232049 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b138749  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)