Cargando…

Estimation in Conditionally Heteroscedastic Time Series Models

In his seminal 1982 paper, Robert F. Engle described a time series model with a time-varying volatility. Engle showed that this model, which he called ARCH (autoregressive conditionally heteroscedastic), is well-suited for the description of economic and financial price. Nowadays ARCH has been repla...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Straumann, Daniel (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Lecture Notes in Statistics, 181
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-26978-6
003 DE-He213
005 20220116091247.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540269786  |9 978-3-540-26978-6 
024 7 |a 10.1007/b138400  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a K  |2 bicssc 
072 7 |a BUS061000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a K  |2 thema 
082 0 4 |a 300.727  |2 23 
100 1 |a Straumann, Daniel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Estimation in Conditionally Heteroscedastic Time Series Models  |h [electronic resource] /  |c by Daniel Straumann. 
250 |a 1st ed. 2005. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a XVI, 228 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Statistics,  |x 2197-7186 ;  |v 181 
505 0 |a Some Mathematical Tools -- Financial Time Series: Facts and Models -- Parameter Estimation: An Overview -- Quasi Maximum Likelihood Estimation in Conditionally Heteroscedastic Time Series Models: A Stochastic Recurrence Equations Approach -- Maximum Likelihood Estimation in Conditionally Heteroscedastic Time Series Models -- Quasi Maximum Likelihood Estimation in a Generalized Conditionally Heteroscedastic Time Series Model with Heavy-tailed Innovations -- Whittle Estimation in a Heavy-tailed GARCH(1,1) Model. 
520 |a In his seminal 1982 paper, Robert F. Engle described a time series model with a time-varying volatility. Engle showed that this model, which he called ARCH (autoregressive conditionally heteroscedastic), is well-suited for the description of economic and financial price. Nowadays ARCH has been replaced by more general and more sophisticated models, such as GARCH (generalized autoregressive heteroscedastic). This monograph concentrates on mathematical statistical problems associated with fitting conditionally heteroscedastic time series models to data. This includes the classical statistical issues of consistency and limiting distribution of estimators. Particular attention is addressed to (quasi) maximum likelihood estimation and misspecified models, along to phenomena due to heavy-tailed innovations. The used methods are based on techniques applied to the analysis of stochastic recurrence equations. Proofs and arguments are given wherever possible in full mathematical rigour. Moreover, the theory is illustrated by examples and simulation studies. 
650 0 |a Statistics . 
650 0 |a Social sciences-Mathematics. 
650 1 4 |a Statistics in Business, Management, Economics, Finance, Insurance. 
650 2 4 |a Mathematics in Business, Economics and Finance. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540801061 
776 0 8 |i Printed edition:  |z 9783540211358 
830 0 |a Lecture Notes in Statistics,  |x 2197-7186 ;  |v 181 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b138400  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)