Cargando…

Generalized Bounds for Convex Multistage Stochastic Programs

This work was completed during my tenure as a scientific assistant and d- toral student at the Institute for Operations Research at the University of St. Gallen. During that time, I was involved in several industry projects in the field of power management, on the occasion of which I was repeatedly...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kuhn, Daniel (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Lecture Notes in Economics and Mathematical Systems, 548
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-26901-4
003 DE-He213
005 20220112121703.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540269014  |9 978-3-540-26901-4 
024 7 |a 10.1007/b138260  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Kuhn, Daniel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Generalized Bounds for Convex Multistage Stochastic Programs  |h [electronic resource] /  |c by Daniel Kuhn. 
250 |a 1st ed. 2005. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a XII, 190 p. 21 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Economics and Mathematical Systems,  |x 2196-9957 ;  |v 548 
505 0 |a Basic Theory of Stochastic Optimization -- Convex Stochastic Programs -- Barycentric Approximation Scheme -- Extensions -- Applications in the Power Industry -- Conclusions. 
520 |a This work was completed during my tenure as a scientific assistant and d- toral student at the Institute for Operations Research at the University of St. Gallen. During that time, I was involved in several industry projects in the field of power management, on the occasion of which I was repeatedly c- fronted with complex decision problems under uncertainty. Although usually hard to solve, I quickly learned to appreciate the benefit of stochastic progr- ming models and developed a strong interest in their theoretical properties. Motivated both by practical questions and theoretical concerns, I became p- ticularly interested in the art of finding tight bounds on the optimal value of a given model. The present work attempts to make a contribution to this important branch of stochastic optimization theory. In particular, it aims at extending some classical bounding methods to broader problem classes of practical relevance. This book was accepted as a doctoral thesis by the University of St. Gallen in June 2004.1 am particularly indebted to Prof. Dr. Karl Frauendorfer for - pervising my work. I am grateful for his kind support in many respects and the generous freedom I received to pursue my own ideas in research. My gratitude also goes to Prof. Dr. Georg Pflug, who agreed to co-chair the dissertation committee. With pleasure I express my appreciation for his encouragement and continuing interest in my work. 
650 0 |a Probabilities. 
650 0 |a Operations research. 
650 0 |a Mathematical optimization. 
650 0 |a Econometrics. 
650 1 4 |a Probability Theory. 
650 2 4 |a Operations Research and Decision Theory. 
650 2 4 |a Optimization. 
650 2 4 |a Quantitative Economics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540802891 
776 0 8 |i Printed edition:  |z 9783540225409 
830 0 |a Lecture Notes in Economics and Mathematical Systems,  |x 2196-9957 ;  |v 548 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b138260  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)