Cargando…

Dynamics Beyond Uniform Hyperbolicity A Global Geometric and Probabilistic Perspective /

In broad terms, the goal of dynamics is to describe the long-term evolution of systems for which an "infinitesimal" evolution rule, such as a differential equation or the iteration of a map, is known. The notion of uniform hyperbolicity, introduced by Steve Smale in the early sixties, unif...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bonatti, Christian (Autor), Díaz, Lorenzo J. (Autor), Viana, Marcelo (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Encyclopaedia of Mathematical Sciences ; 102
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-26844-4
003 DE-He213
005 20220115034353.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540268444  |9 978-3-540-26844-4 
024 7 |a 10.1007/b138174  |2 doi 
050 4 |a QA843-871 
072 7 |a GPFC  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 515.39  |2 23 
100 1 |a Bonatti, Christian.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Dynamics Beyond Uniform Hyperbolicity  |h [electronic resource] :  |b A Global Geometric and Probabilistic Perspective /  |c by Christian Bonatti, Lorenzo J. Díaz, Marcelo Viana. 
250 |a 1st ed. 2005. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a XVIII, 384 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Encyclopaedia of Mathematical Sciences ;  |v 102 
505 0 |a Hyperbolicity and Beyond -- One-Dimensional Dynamics -- Homoclinic Tangencies -- Hénon-like Dynamics -- Non-Critical Dynamics and Hyperbolicity -- Heterodimensional Cycles and Blenders -- Robust Transitivity -- Stable Ergodicity -- Robust Singular Dynamics -- Generic Diffeomorphisms -- SRB Measures and Gibbs States -- Lyapunov Exponents. 
520 |a In broad terms, the goal of dynamics is to describe the long-term evolution of systems for which an "infinitesimal" evolution rule, such as a differential equation or the iteration of a map, is known. The notion of uniform hyperbolicity, introduced by Steve Smale in the early sixties, unified important developments and led to a remarkably successful theory for a large class of systems: uniformly hyperbolic systems often exhibit complicated evolution which, nevertheless, is now rather well understood, both geometrically and statistically. Another revolution has been taking place in the last couple of decades, as one tries to build a global theory for "most" dynamical systems, recovering as much as possible of the conclusions of the uniformly hyperbolic case, in great generality. This book aims to put such recent developments in a unified perspective, and to point out open problems and likely directions for further progress. It is aimed at researchers, both young and senior, willing to get a quick, yet broad, view of this part of dynamics. Main ideas, methods, and results are discussed, at variable degrees of depth, with references to the original works for details and complementary information. The 12 chapters are organised so as to convey a global perspective of this field, but they have been kept rather independent, to allow direct access to specific topics. The five appendices cover important complementary material. 
650 0 |a Dynamical systems. 
650 0 |a Mathematical analysis. 
650 0 |a Mathematical physics. 
650 1 4 |a Dynamical Systems. 
650 2 4 |a Analysis. 
650 2 4 |a Mathematical Methods in Physics. 
700 1 |a Díaz, Lorenzo J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Viana, Marcelo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540801948 
776 0 8 |i Printed edition:  |z 9783642060410 
776 0 8 |i Printed edition:  |z 9783540220664 
830 0 |a Encyclopaedia of Mathematical Sciences ;  |v 102 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b138174  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)