Cargando…

Integral Closure Rees Algebras, Multiplicities, Algorithms /

Integral Closure gives an account of theoretical and algorithmic developments on the integral closure of algebraic structures. These are shared concerns in commutative algebra, algebraic geometry, number theory and the computational aspects of these fields. The overall goal is to determine and analy...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Vasconcelos, Wolmer (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2005.
Edición:1st ed. 2005.
Colección:Springer Monographs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-26503-0
003 DE-He213
005 20220115090745.0
007 cr nn 008mamaa
008 100301s2005 gw | s |||| 0|eng d
020 |a 9783540265030  |9 978-3-540-26503-0 
024 7 |a 10.1007/b137713  |2 doi 
050 4 |a QA251.3 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512.44  |2 23 
100 1 |a Vasconcelos, Wolmer.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Integral Closure  |h [electronic resource] :  |b Rees Algebras, Multiplicities, Algorithms /  |c by Wolmer Vasconcelos. 
250 |a 1st ed. 2005. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2005. 
300 |a XII, 520 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 2196-9922 
505 0 |a Numerical Invariants of a Rees Algebra -- Hilbert Functions and Multiplicities -- Depth and Cohomology of Rees Algebras -- Divisors of a Rees Algebra -- Koszul Homology -- Integral Closure of Algebras -- Integral Closure and Normalization of Ideals -- Integral Closure of Modules -- HowTo. 
520 |a Integral Closure gives an account of theoretical and algorithmic developments on the integral closure of algebraic structures. These are shared concerns in commutative algebra, algebraic geometry, number theory and the computational aspects of these fields. The overall goal is to determine and analyze the equations of the assemblages of the set of solutions that arise under various processes and algorithms. It gives a comprehensive treatment of Rees algebras and multiplicity theory - while pointing to applications in many other problem areas. Its main goal is to provide complexity estimates by tracking numerically invariants of the structures that may occur. This book is intended for graduate students and researchers in the fields mentioned above. It contains, besides exercises aimed at giving insights, numerous research problems motivated by the developments reported. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 0 |a Algebraic geometry. 
650 0 |a Number theory. 
650 1 4 |a Commutative Rings and Algebras. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Number Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540809784 
776 0 8 |i Printed edition:  |z 9783642064920 
776 0 8 |i Printed edition:  |z 9783540255406 
830 0 |a Springer Monographs in Mathematics,  |x 2196-9922 
856 4 0 |u https://doi.uam.elogim.com/10.1007/b137713  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)