Cargando…

Machine Learning for Health Informatics State-of-the-Art and Future Challenges /

Machine learning (ML) is the fastest growing field in computer science, and Health Informatics (HI) is amongst the greatest application challenges, providing future benefits in improved medical diagnoses, disease analyses, and pharmaceutical development. However, successful ML for HI needs a concert...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Holzinger, Andreas (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Lecture Notes in Artificial Intelligence, 9605
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-50478-0
003 DE-He213
005 20221012203443.0
007 cr nn 008mamaa
008 161209s2016 sz | s |||| 0|eng d
020 |a 9783319504780  |9 978-3-319-50478-0 
024 7 |a 10.1007/978-3-319-50478-0  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
245 1 0 |a Machine Learning for Health Informatics  |h [electronic resource] :  |b State-of-the-Art and Future Challenges /  |c edited by Andreas Holzinger. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XXII, 481 p. 98 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 9605 
505 0 |a Machine Learning for Health Informatics -- Bagging Soft Decision Trees -- Grammars for Discrete Dynamics -- Empowering Bridging Term Discovery for Cross-domain Literature Mining in the TextFlows Platform -- Visualisation of Integrated Patient-Centric Data as Pathways: Enhancing Electronic Medical Records in Clinical Practice -- Deep learning trends for focal brain pathology segmentation in MRI -- Differentiation between Normal and Epileptic EEG using K-Nearest-Neighbors Technique -- Survey on Feature Extraction and Applications of Biosignals -- Argumentation for knowledge representation, conflict resolution, defeasible inference and its integration with machine learning -- Machine Learning and Data mining Methods for Managing Parkinson's Disease -- Challenges of Medical Text and Image Processing: Machine Learning Approaches -- Visual Intelligent Decision Support Systems in the medical field: design and evaluation. . 
520 |a Machine learning (ML) is the fastest growing field in computer science, and Health Informatics (HI) is amongst the greatest application challenges, providing future benefits in improved medical diagnoses, disease analyses, and pharmaceutical development. However, successful ML for HI needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization. Tackling complex challenges needs both disciplinary excellence and cross-disciplinary networking without any boundaries. Following the HCI-KDD approach, in combining the best of two worlds, it is aimed to support human intelligence with machine intelligence. This state-of-the-art survey is an output of the international HCI-KDD expert network and features 22 carefully selected and peer-reviewed chapters on hot topics in machine learning for health informatics; they discuss open problems and future challenges in order to stimulate further research and international progress in this field. 
650 0 |a Data mining. 
650 0 |a Medical informatics. 
650 0 |a Algorithms. 
650 0 |a Computer vision. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Health Informatics. 
650 2 4 |a Algorithms. 
650 2 4 |a Computer Vision. 
700 1 |a Holzinger, Andreas.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319504773 
776 0 8 |i Printed edition:  |z 9783319504797 
830 0 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 9605 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-50478-0  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)