Cargando…

Numerical Simulation in Applied Geophysics

This book presents the theory of waves propagation in a fluid-saturated porous medium (a Biot medium) and its application in Applied Geophysics. In particular, a derivation of absorbing boundary conditions in viscoelastic and poroelastic media is presented, which later is employed in the application...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Santos, Juan Enrique (Autor), Gauzellino, Patricia Mercedes (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Edición:1st ed. 2016.
Colección:Lecture Notes in Geosystems Mathematics and Computing,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-48457-0
003 DE-He213
005 20220115194431.0
007 cr nn 008mamaa
008 170113s2016 sz | s |||| 0|eng d
020 |a 9783319484570  |9 978-3-319-48457-0 
024 7 |a 10.1007/978-3-319-48457-0  |2 doi 
050 4 |a TA342-343 
072 7 |a PBWH  |2 bicssc 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBWH  |2 thema 
072 7 |a TBJ  |2 thema 
082 0 4 |a 003.3  |2 23 
100 1 |a Santos, Juan Enrique.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Numerical Simulation in Applied Geophysics  |h [electronic resource] /  |c by Juan Enrique Santos, Patricia Mercedes Gauzellino. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a XV, 309 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Geosystems Mathematics and Computing,  |x 2512-3211 
505 0 |a 1.Waves in porous media -- 2.Extensions of Biot Theory -- 3.Absorbing Boundary Conditions in Viscoelastic and -- 4.Induced Anisotropy, Viscoelastic and Poroelastic -- 5.Wave Propagation in Poroelastic Media. The Finite -- 6.The Mesoscale and the Macroscale. Isotropic Case -- 7.The Mesoscale and the Macroscale. VTI Case -- 8.Wave Propagation at the Macroscale -- . 
520 |a This book presents the theory of waves propagation in a fluid-saturated porous medium (a Biot medium) and its application in Applied Geophysics. In particular, a derivation of absorbing boundary conditions in viscoelastic and poroelastic media is presented, which later is employed in the applications. The partial differential equations describing the propagation of waves in Biot media are solved using the Finite Element Method (FEM). Waves propagating in a Biot medium suffer attenuation and dispersion effects. In particular the fast compressional and shear waves are converted to slow diffusion-type waves at mesoscopic-scale heterogeneities (on the order of centimeters), effect usually occurring in the seismic range of frequencies. In some cases, a Biot medium presents a dense set of fractures oriented in preference directions. When the average distance between fractures is much smaller than the wavelengths of the travelling fast compressional and shear waves, the medium behaves as an effective viscoelastic and anisotropic medium at the macroscale. The book presents a procedure determine the coefficients of the effective medium employing a collection of time-harmonic compressibility and shear experiments, in the context of Numerical Rock Physics. Each experiment is associated with a boundary value problem, that is solved using the FEM. This approach offers an alternative to laboratory observations with the advantages that they are inexpensive, repeatable and essentially free from experimental errors. The different topics are followed by illustrative examples of application in Geophysical Exploration. In particular, the effects caused by mesoscopic-scale heterogeneities or the presence of aligned fractures are taking into account in the seismic wave propagation models at the macroscale. The numerical simulations of wave propagation are presented with sufficient detail as to be easily implemented assuming the knowledge of scientific programming techniques. 
650 0 |a Mathematical models. 
650 0 |a Geophysics. 
650 0 |a Differential equations. 
650 0 |a Environmental sciences. 
650 0 |a Physics. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Geophysics. 
650 2 4 |a Differential Equations. 
650 2 4 |a Environmental Physics. 
650 2 4 |a Mathematical Physics. 
700 1 |a Gauzellino, Patricia Mercedes.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319484563 
776 0 8 |i Printed edition:  |z 9783319484587 
830 0 |a Lecture Notes in Geosystems Mathematics and Computing,  |x 2512-3211 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-48457-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)