Cargando…

A Basic Course in Probability Theory

This text develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. In this second edition, the text has been reorganized for didactic purposes, new exercises have been added and basic theory has been expanded....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bhattacharya, Rabi (Autor), Waymire, Edward C. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:2nd ed. 2016.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-47974-3
003 DE-He213
005 20220117004658.0
007 cr nn 008mamaa
008 170214s2016 sz | s |||| 0|eng d
020 |a 9783319479743  |9 978-3-319-47974-3 
024 7 |a 10.1007/978-3-319-47974-3  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Bhattacharya, Rabi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Basic Course in Probability Theory  |h [electronic resource] /  |c by Rabi Bhattacharya, Edward C. Waymire. 
250 |a 2nd ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XII, 265 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a Preface to Second Edition -- Preface to First Edition -- I. Random Maps, Distribution, and Mathematical Expectation -- II. Independence, Conditional Expectation -- III. Martingales and Stopping Times -- IV. Classical Central Limit Theorems -- V. Classical Zero-One Laws, Laws of Large Numbers and Large Deviations -- VI. Fourier Series, Fourier Transform, and Characteristic Functions -- VII. Weak Convergence of Probability Measures on Metric Spaces -- VIII. Random Series of Independent Summands -- IX. Kolmogorov's Extension Theorem and Brownian Motion -- X. Brownian Motion: The LIL and Some Fine-Scale Properties -- XI. Strong Markov Property, Skorokhod Embedding and Donsker's Invariance Principle -- XII. A Historical Note on Brownian Motion -- XIII. Some Elements of the Theory of Markov Processes and their Convergence to Equilibrium -- A. Measure and Integration -- B. Topology and Function Spaces -- C. Hilbert Spaces and Applications in Measure Theory -- References -- Symbol Index -- Subject Index. 
520 |a This text develops the necessary background in probability theory underlying diverse treatments of stochastic processes and their wide-ranging applications. In this second edition, the text has been reorganized for didactic purposes, new exercises have been added and basic theory has been expanded. General Markov dependent sequences and their convergence to equilibrium is the subject of an entirely new chapter. The introduction of conditional expectation and conditional probability very early in the text maintains the pedagogic innovation of the first edition; conditional expectation is illustrated in detail in the context of an expanded treatment of martingales, the Markov property, and the strong Markov property. Weak convergence of probabilities on metric spaces and Brownian motion are two topics to highlight. A selection of large deviation and/or concentration inequalities ranging from those of Chebyshev, Cramer-Chernoff, Bahadur-Rao, to Hoeffding have been added, with illustrative comparisons of their use in practice. This also includes a treatment of the Berry-Esseen error estimate in the central limit theorem. The authors assume mathematical maturity at a graduate level; otherwise the book is suitable for students with varying levels of background in analysis and measure theory. For the reader who needs refreshers, theorems from analysis and measure theory used in the main text are provided in comprehensive appendices, along with their proofs, for ease of reference. Rabi Bhattacharya is Professor of Mathematics at the University of Arizona. Edward Waymire is Professor of Mathematics at Oregon State University. Both authors have co-authored numerous books, including a series of four upcoming graduate textbooks in stochastic processes with applications. 
650 0 |a Probabilities. 
650 0 |a Measure theory. 
650 1 4 |a Probability Theory. 
650 2 4 |a Measure and Integration. 
700 1 |a Waymire, Edward C.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319479729 
776 0 8 |i Printed edition:  |z 9783319479736 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-47974-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)