Cargando…

EEG Signal Analysis and Classification Techniques and Applications /

This book presents advanced methodologies in two areas related to electroencephalogram (EEG) signals: detection of epileptic seizures and identification of mental states in brain computer interface (BCI) systems. The proposed methods enable the extraction of this vital information from EEG signals i...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Siuly, Siuly (Autor), Li, Yan (Autor), Zhang, Yanchun (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Health Information Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-47653-7
003 DE-He213
005 20220928192603.0
007 cr nn 008mamaa
008 170103s2016 sz | s |||| 0|eng d
020 |a 9783319476537  |9 978-3-319-47653-7 
024 7 |a 10.1007/978-3-319-47653-7  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Siuly, Siuly.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a EEG Signal Analysis and Classification  |h [electronic resource] :  |b Techniques and Applications /  |c by Siuly Siuly, Yan Li, Yanchun Zhang. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIII, 256 p. 96 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Health Information Science,  |x 2366-0996 
505 0 |a Electroencephalogram (EEG) and its background -- Significance of EEG signals in medical and health research -- Objectives and structures of the book -- Random sampling in the detection of epileptic EEG signals -- A novel clustering technique for the detection of epileptic seizures -- A statistical framework for classifying epileptic seizure from multi-category EEG signals -- Injecting principal component analysis with the OA scheme in the epileptic EEG signal classification -- Cross-correlation aided logistic regression model for the identification of motor imagery EEG signals in BCI applications -- Modified CC-LR Algorithm for identification of MI based EEG signals -- Improving prospective performance in the MI recognition: LS-SVM with tuning hyper parameters -- Comparative study: Motor area EEG and All-channels EEG -- Optimum allocation aided Naive Bayes based learning process for the detection of MI tasks -- Summary discussions on the methods, future directions and conclusions. 
520 |a This book presents advanced methodologies in two areas related to electroencephalogram (EEG) signals: detection of epileptic seizures and identification of mental states in brain computer interface (BCI) systems. The proposed methods enable the extraction of this vital information from EEG signals in order to accurately detect abnormalities revealed by the EEG. New methods will relieve the time-consuming and error-prone practices that are currently in use. Common signal processing methodologies include wavelet transformation and Fourier transformation, but these methods are not capable of managing the size of EEG data. Addressing the issue, this book examines new EEG signal analysis approaches with a combination of statistical techniques (e.g. random sampling, optimum allocation) and machine learning methods. The developed methods provide better results than the existing methods. The book also offers applications of the developed methodologies that have been tested on several real-time benchmark databases. This book concludes with thoughts on the future of the field and anticipated research challenges. It gives new direction to the field of analysis and classification of EEG signals through these more efficient methodologies. Researchers and experts will benefit from its suggested improvements to the current computer-aided based diagnostic systems for the precise analysis and management of EEG signals. 
650 0 |a Signal processing. 
650 0 |a Medical informatics. 
650 0 |a Artificial intelligence. 
650 0 |a Biomedical engineering. 
650 0 |a Computer vision. 
650 0 |a Application software. 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Health Informatics. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Biomedical Engineering and Bioengineering. 
650 2 4 |a Computer Vision. 
650 2 4 |a Computer and Information Systems Applications. 
700 1 |a Li, Yan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Zhang, Yanchun.  |e author.  |0 (orcid)0000-0002-5094-5980  |1 https://orcid.org/0000-0002-5094-5980  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319476520 
776 0 8 |i Printed edition:  |z 9783319476544 
776 0 8 |i Printed edition:  |z 9783319837918 
830 0 |a Health Information Science,  |x 2366-0996 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-47653-7  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)