Cargando…

Large-Scale Graph Processing Using Apache Giraph

This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data. Designed as a step-by-step self-study guide for everyone interested in large-scale graph processing, it describes the funda...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Sakr, Sherif (Autor), Orakzai, Faisal Moeen (Autor), Abdelaziz, Ibrahim (Autor), Khayyat, Zuhair (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-47431-1
003 DE-He213
005 20220117170402.0
007 cr nn 008mamaa
008 170106s2016 sz | s |||| 0|eng d
020 |a 9783319474311  |9 978-3-319-47431-1 
024 7 |a 10.1007/978-3-319-47431-1  |2 doi 
050 4 |a QA76.9.D3 
072 7 |a UN  |2 bicssc 
072 7 |a COM021000  |2 bisacsh 
072 7 |a UN  |2 thema 
082 0 4 |a 005.74  |2 23 
100 1 |a Sakr, Sherif.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Large-Scale Graph Processing Using Apache Giraph  |h [electronic resource] /  |c by Sherif Sakr, Faisal Moeen Orakzai, Ibrahim Abdelaziz, Zuhair Khayyat. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XXV, 197 p. 102 illus., 87 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1. Introduction -- 2. Getting started with Giraph -- 3. Giraph-In-Action: Implementing Popular Graph Algorithms using Giraph -- 4. Giraph Programming Optimizations: Tips and Tricks -- 5. Similar Systems to Giraph -- 6. Conclusions. 
520 |a This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data. Designed as a step-by-step self-study guide for everyone interested in large-scale graph processing, it describes the fundamental abstractions of the system, its programming models and various techniques for using the system to process graph data at scale, including the implementation of several popular and advanced graph analytics algorithms. The book is organized as follows: Chapter 1 starts by providing a general background of the big data phenomenon and a general introduction to the Apache Giraph system, its abstraction, programming model and design architecture. Next, chapter 2 focuses on Giraph as a platform and how to use it. Based on a sample job, even more advanced topics like monitoring the Giraph application lifecycle and different methods for monitoring Giraph jobs are explained.  Chapter 3 then provides an introduction to Giraph programming, introduces the basic Giraph graph model and explains how to write Giraph programs. In turn, Chapter 4 discusses in detail the implementation of some popular graph algorithms including PageRank, connected components, shortest paths and triangle closing. Chapter 5 focuses on advanced Giraph programming, discussing common Giraph algorithmic optimizations, tunable Giraph configurations that determine the system's utilization of the underlying resources, and how to write a custom graph input and output format. Lastly, chapter 6 highlights two systems that have been introduced to tackle the challenge of large scale graph processing, GraphX and GraphLab, and explains the main commonalities and differences between these systems and Apache Giraph. This book serves as an essential reference guide for students, researchers and practitioners in the domain of large scale graph processing. It offers step-by-step guidance, with several code examples and the complete source code available in the related github repository. Students will find a comprehensive introduction to and hands-on practice with tackling large scale graph processing problems using the Apache Giraph system, while researchers will discover thorough coverage of the emerging and ongoing advancements in big graph processing systems. 
650 0 |a Database management. 
650 0 |a Quantitative research. 
650 0 |a Artificial intelligence-Data processing. 
650 1 4 |a Database Management. 
650 2 4 |a Data Analysis and Big Data. 
650 2 4 |a Data Science. 
700 1 |a Orakzai, Faisal Moeen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Abdelaziz, Ibrahim.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Khayyat, Zuhair.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319474304 
776 0 8 |i Printed edition:  |z 9783319474328 
776 0 8 |i Printed edition:  |z 9783319837352 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-47431-1  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)