Optimization Techniques in Computer Vision Ill-Posed Problems and Regularization /
This book presents practical optimization techniques used in image processing and computer vision problems. Ill-posed problems are introduced and used as examples to show how each type of problem is related to typical image processing and computer vision problems. Unconstrained optimization gives th...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Edición: | 1st ed. 2016. |
Colección: | Advances in Computer Vision and Pattern Recognition,
|
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Ill-Posed Problems in Imaging and Computer Vision
- Selection of the Regularization Parameter
- Introduction to Optimization
- Unconstrained Optimization
- Constrained Optimization
- Frequency-Domain Implementation of Regularization
- Iterative Methods
- Regularized Image Interpolation Based on Data Fusion
- Enhancement of Compressed Video
- Volumetric Description of Three-Dimensional Objects for Object Recognition
- Regularized 3D Image Smoothing
- Multi-Modal Scene Reconstruction Using Genetic Algorithm-Based Optimization
- Appendix A: Matrix-Vector Representation for Signal Transformation
- Appendix B: Discrete Fourier Transform
- Appendix C: 3D Data Acquisition and Geometric Surface Reconstruction
- Appendix D: Mathematical Appendix
- Index.