Cargando…

Optimization Techniques in Computer Vision Ill-Posed Problems and Regularization /

This book presents practical optimization techniques used in image processing and computer vision problems. Ill-posed problems are introduced and used as examples to show how each type of problem is related to typical image processing and computer vision problems. Unconstrained optimization gives th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Abidi, Mongi A. (Autor), Gribok, Andrei V. (Autor), Paik, Joonki (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Advances in Computer Vision and Pattern Recognition,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-46364-3
003 DE-He213
005 20220116174942.0
007 cr nn 008mamaa
008 161206s2016 sz | s |||| 0|eng d
020 |a 9783319463643  |9 978-3-319-46364-3 
024 7 |a 10.1007/978-3-319-46364-3  |2 doi 
050 4 |a TA1634 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.37  |2 23 
100 1 |a Abidi, Mongi A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Optimization Techniques in Computer Vision  |h [electronic resource] :  |b Ill-Posed Problems and Regularization /  |c by Mongi A. Abidi, Andrei V. Gribok, Joonki Paik. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XV, 293 p. 127 illus., 23 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
505 0 |a Ill-Posed Problems in Imaging and Computer Vision -- Selection of the Regularization Parameter -- Introduction to Optimization -- Unconstrained Optimization -- Constrained Optimization -- Frequency-Domain Implementation of Regularization -- Iterative Methods -- Regularized Image Interpolation Based on Data Fusion -- Enhancement of Compressed Video -- Volumetric Description of Three-Dimensional Objects for Object Recognition -- Regularized 3D Image Smoothing -- Multi-Modal Scene Reconstruction Using Genetic Algorithm-Based Optimization -- Appendix A: Matrix-Vector Representation for Signal Transformation -- Appendix B: Discrete Fourier Transform -- Appendix C: 3D Data Acquisition and Geometric Surface Reconstruction -- Appendix D: Mathematical Appendix -- Index. 
520 |a This book presents practical optimization techniques used in image processing and computer vision problems. Ill-posed problems are introduced and used as examples to show how each type of problem is related to typical image processing and computer vision problems. Unconstrained optimization gives the best solution based on numerical minimization of a single, scalar-valued objective function or cost function. Unconstrained optimization problems have been intensively studied, and many algorithms and tools have been developed to solve them. Most practical optimization problems, however, arise with a set of constraints. Typical examples of constraints include: (i) pre-specified pixel intensity range, (ii) smoothness or correlation with neighboring information, (iii) existence on a certain contour of lines or curves, and (iv) given statistical or spectral characteristics of the solution. Regularized optimization is a special method used to solve a class of constrained optimization problems. The term regularization refers to the transformation of an objective function with constraints into a different objective function, automatically reflecting constraints in the unconstrained minimization process. Because of its simplicity and efficiency, regularized optimization has many application areas, such as image restoration, image reconstruction, optical flow estimation, etc. Optimization plays a major role in a wide variety of theories for image processing and computer vision. Various optimization techniques are used at different levels for these problems, and this volume summarizes and explains these techniques as applied to image processing and computer vision. 
650 0 |a Computer vision. 
650 0 |a Signal processing. 
650 0 |a Algorithms. 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Computer Vision. 
650 2 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Algorithms. 
650 2 4 |a Mathematical Applications in Computer Science. 
700 1 |a Gribok, Andrei V.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Paik, Joonki.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319463636 
776 0 8 |i Printed edition:  |z 9783319463650 
776 0 8 |i Printed edition:  |z 9783319835013 
830 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-46364-3  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)