Taylor Coefficients and Coefficient Multipliers of Hardy and Bergman-Type Spaces
This book provides a systematic overview of the theory of Taylor coefficients of functions in some classical spaces of analytic functions and especially of the coefficient multipliers between spaces of Hardy type. Offering a comprehensive reference guide to the subject, it is the first of its kind i...
| Clasificación: | Libro Electrónico |
|---|---|
| Autores principales: | , , |
| Autor Corporativo: | |
| Formato: | Electrónico eBook |
| Idioma: | Inglés |
| Publicado: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
| Edición: | 1st ed. 2016. |
| Colección: | RSME Springer Series,
2 |
| Temas: | |
| Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- 1 Basic Spaces. Multipliers
- 2 The Poisson Integral
- 3 Subharmonic and h-subharmonic Functions
- 4 Hardy Spaces of Analytic Functions
- 5 Carleson Measures, Mean Oscillation Spaces and Duality
- 6 Polynomial Approximation and Taylor Coefficients of Hp Functions
- 7 The Mixed Norm Spaces Hp,q,α
- 8 Hp,q,α as a Sequence Space
- 9 Tensor Products and Multipliers
- 10 Duality and Multipliers
- 11 Multipliers From Hp and Hp,q,α Spaces to ℓs
- 12 Multiplier Spaces (Hp,q,α,Hu,v,β) and (Hp,Hu)
- 13 Multipliers of Some Large Spaces of Analytic Functions
- 14 The Hilbert Matrix Operator.


