Cargando…

Music Through Fourier Space Discrete Fourier Transform in Music Theory /

This book explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, salienc...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Amiot, Emmanuel (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Computational Music Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-45581-5
003 DE-He213
005 20220118194347.0
007 cr nn 008mamaa
008 161026s2016 sz | s |||| 0|eng d
020 |a 9783319455815  |9 978-3-319-45581-5 
024 7 |a 10.1007/978-3-319-45581-5  |2 doi 
050 4 |a AZ195 
072 7 |a UF  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a UXJ  |2 thema 
072 7 |a UXA  |2 thema 
082 0 4 |a 025.060013  |2 23 
100 1 |a Amiot, Emmanuel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Music Through Fourier Space  |h [electronic resource] :  |b Discrete Fourier Transform in Music Theory /  |c by Emmanuel Amiot. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XV, 206 p. 129 illus., 45 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computational Music Science,  |x 1868-0313 
505 0 |a Discrete Fourier Transform of Distributions -- Homometry and the Phase Retrieval Problem -- Nil Fourier Coefficients and Tilings -- Saliency -- Continuous Spaces, Continuous Fourier Transform -- Phases of Fourier Coefficients. 
520 |a This book explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, saliency, extrapolation to the continuous Fourier transform and continuous spaces, and the meaning of the phases of Fourier coefficients. This is the first textbook dedicated to this subject, and with supporting examples and exercises this is suitable for researchers and advanced undergraduate and graduate students of music, computer science and engineering. The author has made online supplementary material available, and the book is also suitable for practitioners who want to learn about techniques for understanding musical notions and who want to gain musical insights into mathematical problems. 
650 0 |a Digital humanities. 
650 0 |a Music. 
650 0 |a Music-Mathematics. 
650 0 |a Computer science-Mathematics. 
650 0 |a User interfaces (Computer systems). 
650 0 |a Human-computer interaction. 
650 0 |a Signal processing. 
650 1 4 |a Digital Humanities. 
650 2 4 |a Music. 
650 2 4 |a Mathematics in Music. 
650 2 4 |a Mathematics of Computing. 
650 2 4 |a User Interfaces and Human Computer Interaction. 
650 2 4 |a Signal, Speech and Image Processing . 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319455808 
776 0 8 |i Printed edition:  |z 9783319455822 
776 0 8 |i Printed edition:  |z 9783319833231 
830 0 |a Computational Music Science,  |x 1868-0313 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-45581-5  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)