|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-319-45581-5 |
003 |
DE-He213 |
005 |
20220118194347.0 |
007 |
cr nn 008mamaa |
008 |
161026s2016 sz | s |||| 0|eng d |
020 |
|
|
|a 9783319455815
|9 978-3-319-45581-5
|
024 |
7 |
|
|a 10.1007/978-3-319-45581-5
|2 doi
|
050 |
|
4 |
|a AZ195
|
072 |
|
7 |
|a UF
|2 bicssc
|
072 |
|
7 |
|a COM018000
|2 bisacsh
|
072 |
|
7 |
|a UXJ
|2 thema
|
072 |
|
7 |
|a UXA
|2 thema
|
082 |
0 |
4 |
|a 025.060013
|2 23
|
100 |
1 |
|
|a Amiot, Emmanuel.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Music Through Fourier Space
|h [electronic resource] :
|b Discrete Fourier Transform in Music Theory /
|c by Emmanuel Amiot.
|
250 |
|
|
|a 1st ed. 2016.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing :
|b Imprint: Springer,
|c 2016.
|
300 |
|
|
|a XV, 206 p. 129 illus., 45 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Computational Music Science,
|x 1868-0313
|
505 |
0 |
|
|a Discrete Fourier Transform of Distributions -- Homometry and the Phase Retrieval Problem -- Nil Fourier Coefficients and Tilings -- Saliency -- Continuous Spaces, Continuous Fourier Transform -- Phases of Fourier Coefficients.
|
520 |
|
|
|a This book explains the state of the art in the use of the discrete Fourier transform (DFT) of musical structures such as rhythms or scales. In particular the author explains the DFT of pitch-class distributions, homometry and the phase retrieval problem, nil Fourier coefficients and tilings, saliency, extrapolation to the continuous Fourier transform and continuous spaces, and the meaning of the phases of Fourier coefficients. This is the first textbook dedicated to this subject, and with supporting examples and exercises this is suitable for researchers and advanced undergraduate and graduate students of music, computer science and engineering. The author has made online supplementary material available, and the book is also suitable for practitioners who want to learn about techniques for understanding musical notions and who want to gain musical insights into mathematical problems.
|
650 |
|
0 |
|a Digital humanities.
|
650 |
|
0 |
|a Music.
|
650 |
|
0 |
|a Music-Mathematics.
|
650 |
|
0 |
|a Computer science-Mathematics.
|
650 |
|
0 |
|a User interfaces (Computer systems).
|
650 |
|
0 |
|a Human-computer interaction.
|
650 |
|
0 |
|a Signal processing.
|
650 |
1 |
4 |
|a Digital Humanities.
|
650 |
2 |
4 |
|a Music.
|
650 |
2 |
4 |
|a Mathematics in Music.
|
650 |
2 |
4 |
|a Mathematics of Computing.
|
650 |
2 |
4 |
|a User Interfaces and Human Computer Interaction.
|
650 |
2 |
4 |
|a Signal, Speech and Image Processing .
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319455808
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319455822
|
776 |
0 |
8 |
|i Printed edition:
|z 9783319833231
|
830 |
|
0 |
|a Computational Music Science,
|x 1868-0313
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-319-45581-5
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SCS
|
912 |
|
|
|a ZDB-2-SXCS
|
950 |
|
|
|a Computer Science (SpringerNature-11645)
|
950 |
|
|
|a Computer Science (R0) (SpringerNature-43710)
|