Cargando…

Elliptic Curves, Modular Forms and Iwasawa Theory In Honour of John H. Coates' 70th Birthday, Cambridge, UK, March 2015 /

Celebrating one of the leading figures in contemporary number theory - John H. Coates - on the occasion of his 70th birthday, this collection of contributions covers a range of topics in number theory, concentrating on the arithmetic of elliptic curves, modular forms, and Galois representations. Sev...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Loeffler, David (Editor ), Zerbes, Sarah Livia (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Springer Proceedings in Mathematics & Statistics, 188
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • 1. A.Berti, M.Bertolini, R.Venerucci: Congruences between modular forms and the Birch and Swinnerton-Dyer conjecture
  • 2. T.Bouganis: P-adic measures for Hermitian modular forms and the Rankin-Selberg method
  • 3. A.Conti, A.Iovita, J.Tilouine: Big image of Galois representations associated with finite slope p-adic families of modular forms
  • 4. A.Dabrowski: Behaviour of the order of Tate-Shafarevich groups for the quadratic twists of X0(49)
  • 5. T.Fukaya, K.Kato, R.Sharifi: Compactifications of S-arithmetic quotients for the projective general linear group
  • 6. R.Greenberg: On the structure of Selmer groups
  • 7. H.Hida: Control of Lambda-adic Mordell-Weil groups
  • 8. M.Kakde: Some congruences for non-CM elliptic curves
  • 9. M.Kim: Diophantine geometry and non-abelian reciprocity laws I
  • 10. G.Kings: On p-adic interpolation of motivic Eisenstein classes
  • 11. T. Lawson, C.Wuthrich: Vanishing of some Galois cohomology groups for elliptic curves
  • 12. P.Schneider, O.Venjakob: Coates-Wiles homomorphisms and Iwasawa cohomology for Lubin-Tate extensions
  • 13. A.Wiles, A.Snowden: Big image in compatible systems.