Algorithmic Advances in Riemannian Geometry and Applications For Machine Learning, Computer Vision, Statistics, and Optimization /
This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | SpringerLink (Online service) |
Otros Autores: | Minh, Hà Quang (Editor ), Murino, Vittorio (Editor ) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Edición: | 1st ed. 2016. |
Colección: | Advances in Computer Vision and Pattern Recognition,
|
Temas: | |
Acceso en línea: | Texto Completo |
Ejemplares similares
-
Machine Learning and Interpretation in Neuroimaging 4th International Workshop, MLINI 2014, Held at NIPS 2014, Montreal, QC, Canada, December 13, 2014, Revised Selected Papers /
Publicado: (2016) -
Information Theory in Computer Vision and Pattern Recognition
por: Escolano Ruiz, Francisco, et al.
Publicado: (2009) -
Subspace, Latent Structure and Feature Selection Statistical and Optimization Perspectives Workshop, SLSFS 2005 Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers /
Publicado: (2006) -
Core Concepts in Data Analysis: Summarization, Correlation and Visualization
por: Mirkin, Boris
Publicado: (2011) -
Hebbian Learning and Negative Feedback Networks
por: Fyfe, Colin
Publicado: (2005)