Cargando…

Algorithmic Advances in Riemannian Geometry and Applications For Machine Learning, Computer Vision, Statistics, and Optimization /

This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Minh, Hà Quang (Editor ), Murino, Vittorio (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Advances in Computer Vision and Pattern Recognition,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-45026-1
003 DE-He213
005 20220116211028.0
007 cr nn 008mamaa
008 161005s2016 sz | s |||| 0|eng d
020 |a 9783319450261  |9 978-3-319-45026-1 
024 7 |a 10.1007/978-3-319-45026-1  |2 doi 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQP  |2 thema 
082 0 4 |a 006.4  |2 23 
245 1 0 |a Algorithmic Advances in Riemannian Geometry and Applications  |h [electronic resource] :  |b For Machine Learning, Computer Vision, Statistics, and Optimization /  |c edited by Hà Quang Minh, Vittorio Murino. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIV, 208 p. 55 illus., 51 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
520 |a This book presents a selection of the most recent algorithmic advances in Riemannian geometry in the context of machine learning, statistics, optimization, computer vision, and related fields. The unifying theme of the different chapters in the book is the exploitation of the geometry of data using the mathematical machinery of Riemannian geometry. As demonstrated by all the chapters in the book, when the data is intrinsically non-Euclidean, the utilization of this geometrical information can lead to better algorithms that can capture more accurately the structures inherent in the data, leading ultimately to better empirical performance. This book is not intended to be an encyclopedic compilation of the applications of Riemannian geometry. Instead, it focuses on several important research directions that are currently actively pursued by researchers in the field. These include statistical modeling and analysis on manifolds,optimization on manifolds, Riemannian manifolds and kernel methods, and dictionary learning and sparse coding on manifolds. Examples of applications include novel algorithms for Monte Carlo sampling and Gaussian Mixture Model fitting,  3D brain image analysis,image classification, action recognition, and motion tracking. 
650 0 |a Pattern recognition systems. 
650 0 |a Computational intelligence. 
650 0 |a Mathematical statistics-Data processing. 
650 0 |a Computer science-Mathematics. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematical statistics. 
650 1 4 |a Automated Pattern Recognition. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Statistics and Computing. 
650 2 4 |a Mathematical Applications in Computer Science. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Probability and Statistics in Computer Science. 
700 1 |a Minh, Hà Quang.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Murino, Vittorio.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319450254 
776 0 8 |i Printed edition:  |z 9783319450278 
776 0 8 |i Printed edition:  |z 9783319831909 
830 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-45026-1  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)