Cargando…

Optical Flow and Trajectory Estimation Methods

This brief focuses on two main problems in the domain of optical flow and trajectory estimation: (i) The problem of finding convex optimization methods to apply sparsity to optical flow; and (ii) The problem of how to extend sparsity to improve trajectories in a computationally tractable way. Beginn...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gibson, Joel (Autor), Marques, Oge (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:SpringerBriefs in Computer Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-44941-8
003 DE-He213
005 20220114173154.0
007 cr nn 008mamaa
008 160901s2016 sz | s |||| 0|eng d
020 |a 9783319449418  |9 978-3-319-44941-8 
024 7 |a 10.1007/978-3-319-44941-8  |2 doi 
050 4 |a TA1501-1820 
050 4 |a TA1634 
072 7 |a UYT  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYT  |2 thema 
082 0 4 |a 006  |2 23 
100 1 |a Gibson, Joel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Optical Flow and Trajectory Estimation Methods  |h [electronic resource] /  |c by Joel Gibson, Oge Marques. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a X, 49 p. 6 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5776 
505 0 |a Optical Flow Fundamentals -- Optical Flow and Trajectory Methods in Context -- Sparse Regularization of TV-L Optical Flow -- Robust Low Rank Trajectories. 
520 |a This brief focuses on two main problems in the domain of optical flow and trajectory estimation: (i) The problem of finding convex optimization methods to apply sparsity to optical flow; and (ii) The problem of how to extend sparsity to improve trajectories in a computationally tractable way. Beginning with a review of optical flow fundamentals, it discusses the commonly used flow estimation strategies and the advantages or shortcomings of each. The brief also introduces the concepts associated with sparsity including dictionaries and low rank matrices. Next, it provides context for optical flow and trajectory methods including algorithms, data sets, and performance measurement. The second half of the brief covers sparse regularization of total variation optical flow and robust low rank trajectories. The authors describe a new approach that uses partially-overlapping patches to accelerate the calculation and is implemented in a coarse-to-fine strategy. Experimental results show that combining total variation and a sparse constraint from a learned dictionary is more effective than employing total variation alone. The brief is targeted at researchers and practitioners in the fields of engineering and computer science. It caters particularly to new researchers looking for cutting edge topics in optical flow as well as veterans of optical flow wishing to learn of the latest advances in multi-frame methods. 
650 0 |a Image processing-Digital techniques. 
650 0 |a Computer vision. 
650 1 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
700 1 |a Marques, Oge.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319449401 
776 0 8 |i Printed edition:  |z 9783319449425 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5776 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-44941-8  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)