Cargando…

Big Data Technologies and Applications

The objective of this book is to introduce the basic concepts of big data computing and then to describe the total solution of big data problems using HPCC, an open-source computing platform. The book comprises 15 chapters broken into three parts. The first part, Big Data Technologies, includes intr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Furht, Borko (Autor), Villanustre, Flavio (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-44550-2
003 DE-He213
005 20220112152646.0
007 cr nn 008mamaa
008 160916s2016 sz | s |||| 0|eng d
020 |a 9783319445502  |9 978-3-319-44550-2 
024 7 |a 10.1007/978-3-319-44550-2  |2 doi 
050 4 |a TK5105.5-5105.9 
072 7 |a UKN  |2 bicssc 
072 7 |a COM069000  |2 bisacsh 
072 7 |a UKN  |2 thema 
082 0 4 |a 004.6  |2 23 
100 1 |a Furht, Borko.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Big Data Technologies and Applications  |h [electronic resource] /  |c by Borko Furht, Flavio Villanustre. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XVIII, 400 p. 118 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction to Big Data -- Big Data Analytics -- Transfer Learning Techniques -- Visualizing Big Data -- Deep Learning and Big Data -- The HPCC/ECL Platform for Big Data -- Scalable Automated Linking Technology for Big Data Computing -- Aggregated Data Analysis in HPCC Systems -- Models for Big Data -- Data Intensive Supercomputing Solutions -- Graph Processing with Massive Datasets: A KEL Primer -- HPCC Systems for Cyber Security Analytics -- Social Network Analytics: Hidden and Complex Fraud Schemes -- Modeling Ebola Spread and Using HPCC/KEL System -- Unsupervised Learning and Image Classification in High Performance Computing Cluster. 
520 |a The objective of this book is to introduce the basic concepts of big data computing and then to describe the total solution of big data problems using HPCC, an open-source computing platform. The book comprises 15 chapters broken into three parts. The first part, Big Data Technologies, includes introductions to big data concepts and techniques; big data analytics; and visualization and learning techniques. The second part, LexisNexis Risk Solution to Big Data, focuses on specific technologies and techniques developed at LexisNexis to solve critical problems that use big data analytics. It covers the open source High Performance Computing Cluster (HPCC Systems®) platform and its architecture, as well as parallel data languages ECL and KEL, developed to effectively solve big data problems. The third part, Big Data Applications, describes various data intensive applications solved on HPCC Systems. It includes applications such as cyber security, social network analytics including fraud, Ebola spread modeling using big data analytics, unsupervised learning, and image classification. The book is intended for a wide variety of people including researchers, scientists, programmers, engineers, designers, developers, educators, and students. This book can also be beneficial for business managers, entrepreneurs, and investors. . 
650 0 |a Computer networks . 
650 0 |a Software engineering. 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Computer Communication Networks. 
650 2 4 |a Software Engineering. 
650 2 4 |a Mathematical Applications in Computer Science. 
700 1 |a Villanustre, Flavio.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319445489 
776 0 8 |i Printed edition:  |z 9783319445496 
776 0 8 |i Printed edition:  |z 9783319830773 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-44550-2  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)