Cargando…

Hardy Type Inequalities on Time Scales

The book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via conve...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Agarwal, Ravi P. (Autor), O'Regan, Donal (Autor), Saker, Samir H. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-44299-0
003 DE-He213
005 20220120135539.0
007 cr nn 008mamaa
008 161020s2016 sz | s |||| 0|eng d
020 |a 9783319442990  |9 978-3-319-44299-0 
024 7 |a 10.1007/978-3-319-44299-0  |2 doi 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.7  |2 23 
100 1 |a Agarwal, Ravi P.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Hardy Type Inequalities on Time Scales  |h [electronic resource] /  |c by Ravi P. Agarwal, Donal O'Regan, Samir H. Saker. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a X, 305 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
520 |a The book is devoted to dynamic inequalities of Hardy type and extensions and generalizations via convexity on a time scale T. In particular, the book contains the time scale versions of classical Hardy type inequalities, Hardy and Littlewood type inequalities, Hardy-Knopp type inequalities via convexity, Copson type inequalities, Copson-Beesack type inequalities, Liendeler type inequalities, Levinson type inequalities and Pachpatte type inequalities, Bennett type inequalities, Chan type inequalities, and Hardy type inequalities with two different weight functions. These dynamic inequalities contain the classical continuous and discrete inequalities as special cases when T = R and T = N and can be extended to different types of inequalities on different time scales such as T = hN, h > 0, T = qN for q > 1, etc.In this book the authors followed the history and development of these inequalities. Each section in self-contained and one can see the relationship between the time scale versions of the inequalities and the classical ones. To the best of the authors' knowledge this is the first book devoted to Hardy-type inequalities and their extensions on time scales. 
650 0 |a Functional analysis. 
650 0 |a Measure theory. 
650 1 4 |a Functional Analysis. 
650 2 4 |a Measure and Integration. 
700 1 |a O'Regan, Donal.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Saker, Samir H.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319442983 
776 0 8 |i Printed edition:  |z 9783319443003 
776 0 8 |i Printed edition:  |z 9783319830346 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-44299-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)