Cargando…

Representation Theory of Finite Monoids

This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Steinberg, Benjamin (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-43932-7
003 DE-He213
005 20220114171324.0
007 cr nn 008mamaa
008 161209s2016 sz | s |||| 0|eng d
020 |a 9783319439327  |9 978-3-319-43932-7 
024 7 |a 10.1007/978-3-319-43932-7  |2 doi 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.2  |2 23 
100 1 |a Steinberg, Benjamin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Representation Theory of Finite Monoids  |h [electronic resource] /  |c by Benjamin Steinberg. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XXIV, 320 p. 28 illus., 15 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a Preface -- List of Figures -- Introduction -- I. Elements of Monoid Theory -- 1. The Structure Theory of Finite Monoids -- 2. R-trivial Monoids -- 3. Inverse Monoids -- II. Irreducible Representations -- 4. Recollement: The Theory of an Idempotent -- 5. Irreducible Representations -- III. Character Theory -- 6. Grothendieck Ring -- 7. Characters and Class Functions -- IV. The Representation Theory of Inverse Monoids -- 8. Categories and Groupoids -- 9. The Representation Theory of Inverse Monoids -- V. The Rhodes Radical -- 10. Bi-ideals and R. Steinberg's Theorem -- 11. The Rhodes Radical and Triangularizability -- VI. Applications -- 12. Zeta Functions of Languages and Dynamical Systems -- 13. Transformation Monoids -- 14. Markov Chains -- VII. Advanced Topics -- 15. Self-injective, Frobenius and Symmetric Algebras -- 16. Global Dimension -- 17. Quivers of Monoid Algebras -- 18. Further Developments -- A. Finite Dimensional Algebras -- B. Group Representation Theory -- C. Incidence Algebras and Möbius Inversion -- References -- Index of Notation -- Subject Index. 
520 |a This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory, and the basics of Wedderburn theory, are prerequisites for advanced graduate level study. Researchers in algebra, algebraic combinatorics, automata theory, and probability theory, will find this text enriching with its thorough presentation of applications of the theory to these fields. Prior knowledge of semigroup theory is not expected for the diverse readership that may benefit from this exposition. The approach taken in this book is highly module-theoretic and follows the modern flavor of the theory of finite dimensional algebras. The content is divided into 7 parts. Part I consists of 3 preliminary chapters with no prior knowledge beyond group theory assumed. Part II forms the core of the material giving a modern module-theoretic treatment of the Clifford -Munn-Ponizovskii theory of irreducible representations. Part III concerns character theory and the character table of a monoid. Part IV is devoted to the representation theory of inverse monoids and categories and Part V presents the theory of the Rhodes radical with applications to triangularizability. Part VI features 3 chapters devoted to applications to diverse areas of mathematics and forms a high point of the text. The last part, Part VII, is concerned with advanced topics. There are also 3 appendices reviewing finite dimensional algebras, group representation theory, and Möbius inversion. 
650 0 |a Group theory. 
650 0 |a Probabilities. 
650 0 |a Discrete mathematics. 
650 1 4 |a Group Theory and Generalizations. 
650 2 4 |a Probability Theory. 
650 2 4 |a Discrete Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319439303 
776 0 8 |i Printed edition:  |z 9783319439310 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-43932-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)