Topology and Geometric Group Theory Ohio State University, Columbus, USA, 2010-2011 /
This book presents articles at the interface of two active areas of research: classical topology and the relatively new field of geometric group theory. It includes two long survey articles, one on proofs of the Farrell-Jones conjectures, and the other on ends of spaces and groups. In 2010-2011, Ohi...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Edición: | 1st ed. 2016. |
Colección: | Springer Proceedings in Mathematics & Statistics,
184 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- 1.Arthur Bartels: On proofs of the Farrell-Jones Conjecture
- 2.Daniel Juan-Pineda and Luis Jorge Sanchez Saldana: The K- and L-theoretic Farrell-Jones Isomorphism conjecture for braid groups
- 3.Craig Guilbault: Ends, shapes, and boundaries in manifold topology and geometric group theory
- 4.Daniel Farley: A proof of Sageev's Theorem on hyperplanes in CAT(0) cubical complexes
- 5.Pierre-Emmanuel Caprace and Bertrand Remy: Simplicity of twin tree lattices with non-trivial commutation relations
- 6.Peter Kropholler: Groups with many finitary cohomology functors.