Cargando…

Cool Math for Hot Music A First Introduction to Mathematics for Music Theorists /

This textbook is a first introduction to mathematics for music theorists, covering basic topics such as sets and functions, universal properties, numbers and recursion, graphs, groups, rings, matrices and modules, continuity, calculus, and gestures. It approaches these abstract themes in a new way:...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Mazzola, Guerino (Autor), Mannone, Maria (Autor), Pang, Yan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Computational Music Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-42937-3
003 DE-He213
005 20220118132808.0
007 cr nn 008mamaa
008 161026s2016 sz | s |||| 0|eng d
020 |a 9783319429373  |9 978-3-319-42937-3 
024 7 |a 10.1007/978-3-319-42937-3  |2 doi 
050 4 |a AZ195 
072 7 |a UF  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a UXJ  |2 thema 
072 7 |a UXA  |2 thema 
082 0 4 |a 025.060013  |2 23 
100 1 |a Mazzola, Guerino.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Cool Math for Hot Music  |h [electronic resource] :  |b A First Introduction to Mathematics for Music Theorists /  |c by Guerino Mazzola, Maria Mannone, Yan Pang. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XV, 323 p. 179 illus., 112 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computational Music Science,  |x 1868-0313 
505 0 |a Part I: Introduction and Short History -- The 'Counterpoint' of Mathematics and Music -- Short History of the Relationship Between Mathematics and Music -- Part II: Sets and Functions -- The Architecture of Sets -- Functions and Relations -- Universal Properties -- Part III: Numbers -- Natural Numbers -- Recursion -- Natural Arithmetic -- Euclid and Normal Forms -- Integers -- Rationals -- Real Numbers -- Roots, Logarithms, and Normal Forms -- Complex Numbers -- Part IV: Graphs and Nerves -- Directed and Undirected Graphs -- Nerves -- Part V: Monoids and Groups -- Monoids -- Groups -- Group Actions, Subgroups, Quotients, and Products -- Permutation Groups -- The Third Torus and Counterpoint -- Coltrane's Giant Steps -- Modulation Theory -- Part VI: Rings and Modules -- Rings and Fields -- Primes -- Matrices -- Modules -- Just Tuning -- Categories -- Part VII: Continuity and Calculus -- Continuity -- Differentiability -- Performance -- Gestures -- Part VIII: Solutions, References, Index -- Solutions of Exercises -- References -- Index. 
520 |a This textbook is a first introduction to mathematics for music theorists, covering basic topics such as sets and functions, universal properties, numbers and recursion, graphs, groups, rings, matrices and modules, continuity, calculus, and gestures. It approaches these abstract themes in a new way: Every concept or theorem is motivated and illustrated by examples from music theory (such as harmony, counterpoint, tuning), composition (e.g., classical combinatorics, dodecaphonic composition), and gestural performance. The book includes many illustrations, and exercises with solutions. 
650 0 |a Digital humanities. 
650 0 |a Music. 
650 0 |a Music-Mathematics. 
650 0 |a Computer science-Mathematics. 
650 0 |a Artificial intelligence. 
650 1 4 |a Digital Humanities. 
650 2 4 |a Music. 
650 2 4 |a Mathematics in Music. 
650 2 4 |a Mathematics of Computing. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Mannone, Maria.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Pang, Yan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319429359 
776 0 8 |i Printed edition:  |z 9783319429366 
776 0 8 |i Printed edition:  |z 9783319826981 
830 0 |a Computational Music Science,  |x 1868-0313 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-42937-3  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)