Preserving Privacy Against Side-Channel Leaks From Data Publishing to Web Applications /
This book offers a novel approach to data privacy by unifying side-channel attacks within a general conceptual framework. This book then applies the framework in three concrete domains. First, the book examines privacy-preserving data publishing with publicly-known algorithms, studying a generic str...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Edición: | 1st ed. 2016. |
Colección: | Advances in Information Security,
68 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Introduction
- Related Work
- Data Publishing: Trading off Privacy with Utility through the k-Jump Strategy
- Data Publishing: A Two-Stage Approach to Improving Algorithm Efficiency
- Web Applications: k-Indistinguishable Traffic Padding
- Web Applications: Background-Knowledge Resistant Random Padding
- Smart Metering: Inferences of Appliance Status from Fine-Grained Readings
- The Big Picture: A Generic Model of Side-Channel Leaks
- Conclusion.