Cargando…

The Structure and Stability of Persistence Modules

This book is a comprehensive treatment of the theory of persistence modules over the real line. It presents a set of mathematical tools to analyse the structure and to establish the stability of such modules, providing a sound mathematical framework for the study of persistence diagrams. Completely...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Chazal, Frédéric (Autor), de Silva, Vin (Autor), Glisse, Marc (Autor), Oudot, Steve (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:SpringerBriefs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-42545-0
003 DE-He213
005 20220120224442.0
007 cr nn 008mamaa
008 161008s2016 sz | s |||| 0|eng d
020 |a 9783319425450  |9 978-3-319-42545-0 
024 7 |a 10.1007/978-3-319-42545-0  |2 doi 
050 4 |a QA612-612.8 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBPD  |2 thema 
082 0 4 |a 514.2  |2 23 
100 1 |a Chazal, Frédéric.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Structure and Stability of Persistence Modules  |h [electronic resource] /  |c by Frédéric Chazal, Vin de Silva, Marc Glisse, Steve Oudot. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a X, 120 p. 17 illus., 15 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8201 
505 0 |a Introduction -- Persistence Modules -- Rectangle Measures -- Interleaving -- The Isometry Theorem -- Variations -- References -- Index. 
520 |a This book is a comprehensive treatment of the theory of persistence modules over the real line. It presents a set of mathematical tools to analyse the structure and to establish the stability of such modules, providing a sound mathematical framework for the study of persistence diagrams. Completely self-contained, this brief introduces the notion of persistence measure and makes extensive use of a new calculus of quiver representations to facilitate explicit computations. Appealing to both beginners and experts in the subject, The Structure and Stability of Persistence Modules provides a purely algebraic presentation of persistence, and thus complements the existing literature, which focuses mainly on topological and algorithmic aspects. 
650 0 |a Algebraic topology. 
650 0 |a Algebra. 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Algebraic Topology. 
650 2 4 |a Algebra. 
650 2 4 |a Mathematical Applications in Computer Science. 
700 1 |a de Silva, Vin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Glisse, Marc.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Oudot, Steve.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319425436 
776 0 8 |i Printed edition:  |z 9783319425443 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8201 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-42545-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)