Optimization and Its Applications in Control and Data Sciences In Honor of Boris T. Polyak's 80th Birthday /
This book focuses on recent research in modern optimization and its implications in control and data analysis. This book is a collection of papers from the conference "Optimization and Its Applications in Control and Data Science" dedicated to Professor Boris T. Polyak, which was held in M...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cham :
Springer International Publishing : Imprint: Springer,
2016.
|
Edición: | 1st ed. 2016. |
Colección: | Springer Optimization and Its Applications,
115 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Introduction: Big, Small, and Optimal Steps of Boris Polyak (Boris Goldengorin)
- A Convex Optimization Approach to Modeling of Stationary Periodic Time Series (Anders Lindquist and Giorgio Picci)
- New two-phase proximal method of solving the solving the problem of equilibrium programming (Sergey I. Lyashko and Vladimir V. Semenov)
- Minimax Control of Positive Switching Systems with Markovian Jumps (Patrizio Colaneri, José Geromel, Paolo Bolzern, Grace Deaecto)
- A modified Polak-Ribière-Polyak conjugate gradient algorithm with sufficient descent and conjugacy properties for unconstrained optimization (Neculai Andrei)
- Subgradient method with the transformation of space and Polyak's step (Petro Stetsyuk)
- Invariance Conditions for Nonlinear Dynamical Systems (Y. Song, and T. Terlaky)
- Nonparametric ellipsoidal approximation of compact sets of random points (S. I., Lyashko, V.V. Semenov D.A. Klyushin, M.V. Prysyazhna, M.P. Shlykov)
- Algorithmic Principle of the Least Excessive Revenue for finding market equilibria (Yurii Nesterov, Vladimir Shikhman)
- Matrix-Free Convex Optimization Modeling (Stephen Boyd and Steven Diamond)
- Stochastic Optimization and Statistical Learning in Reproducing Kernel Hilbert Spaces the Stochastic Quasi-Gradient Methods (Vladimir I. Norkin). .