Cargando…

Optimization and Its Applications in Control and Data Sciences In Honor of Boris T. Polyak's 80th Birthday /

This book focuses on recent research in modern optimization and its implications in control and data analysis. This book is a collection of papers from the conference "Optimization and Its Applications in Control and Data Science" dedicated to Professor Boris T. Polyak, which was held in M...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Goldengorin, Boris (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Springer Optimization and Its Applications, 115
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-42056-1
003 DE-He213
005 20220114113001.0
007 cr nn 008mamaa
008 160929s2016 sz | s |||| 0|eng d
020 |a 9783319420561  |9 978-3-319-42056-1 
024 7 |a 10.1007/978-3-319-42056-1  |2 doi 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
245 1 0 |a Optimization and Its Applications in Control and Data Sciences  |h [electronic resource] :  |b In Honor of Boris T. Polyak's 80th Birthday /  |c edited by Boris Goldengorin. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XVII, 507 p. 45 illus., 22 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Optimization and Its Applications,  |x 1931-6836 ;  |v 115 
505 0 |a Introduction: Big, Small, and Optimal Steps of Boris Polyak (Boris Goldengorin) -- A Convex Optimization Approach to Modeling of Stationary Periodic Time Series (Anders Lindquist and Giorgio Picci) -- New two-phase proximal method of solving the solving the problem of equilibrium programming (Sergey I. Lyashko and Vladimir V. Semenov) -- Minimax Control of Positive Switching Systems with Markovian Jumps (Patrizio Colaneri, José Geromel, Paolo Bolzern, Grace Deaecto) -- A modified Polak-Ribière-Polyak conjugate gradient algorithm with sufficient descent and conjugacy properties for unconstrained optimization (Neculai Andrei) -- Subgradient method with the transformation of space and Polyak's step (Petro Stetsyuk) -- Invariance Conditions for Nonlinear Dynamical Systems (Y. Song, and T. Terlaky) -- Nonparametric ellipsoidal approximation of compact sets of random points (S. I., Lyashko, V.V. Semenov D.A. Klyushin, M.V. Prysyazhna, M.P. Shlykov) -- Algorithmic Principle of the Least Excessive Revenue for finding market equilibria (Yurii Nesterov, Vladimir Shikhman) -- Matrix-Free Convex Optimization Modeling (Stephen Boyd and Steven Diamond) -- Stochastic Optimization and Statistical Learning in Reproducing Kernel Hilbert Spaces the Stochastic Quasi-Gradient Methods (Vladimir I. Norkin). . 
520 |a This book focuses on recent research in modern optimization and its implications in control and data analysis. This book is a collection of papers from the conference "Optimization and Its Applications in Control and Data Science" dedicated to Professor Boris T. Polyak, which was held in Moscow, Russia on May 13-15, 2015. This book reflects developments in theory and applications rooted by Professor Polyak's fundamental contributions to constrained and unconstrained optimization, differentiable and nonsmooth functions, control theory and approximation. Each paper focuses on techniques for solving complex optimization problems in different application areas and recent developments in optimization theory and methods. Open problems in optimization, game theory and control theory are included in this collection which will interest engineers and researchers working with efficient algorithms and software for solving optimization problems in market and data analysis. Theoreticians in operations research, applied mathematics, algorithm design, artificial intelligence, machine learning, and software engineering will find this book useful and graduate students will find the state-of-the-art research valuable. 
650 0 |a Mathematical optimization. 
650 0 |a Artificial intelligence-Data processing. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 0 |a Dynamical systems. 
650 0 |a Algorithms. 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Optimization. 
650 2 4 |a Data Science. 
650 2 4 |a Systems Theory, Control . 
650 2 4 |a Dynamical Systems. 
650 2 4 |a Algorithms. 
650 2 4 |a Mathematical Applications in Computer Science. 
700 1 |a Goldengorin, Boris.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319420547 
776 0 8 |i Printed edition:  |z 9783319420554 
776 0 8 |i Printed edition:  |z 9783319824901 
830 0 |a Springer Optimization and Its Applications,  |x 1931-6836 ;  |v 115 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-42056-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)