Cargando…

Social Network Analysis in Predictive Policing Concepts, Models and Methods /

This book focuses on applications of social network analysis in predictive policing. Data science is used to identify potential criminal activity by analyzing the relationships between offenders to fully understand criminal collaboration patterns. Co-offending networks-networks of offenders who have...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Tayebi, Mohammad A. (Autor), Glässer, Uwe (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Lecture Notes in Social Networks,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-41492-8
003 DE-He213
005 20220115215429.0
007 cr nn 008mamaa
008 161011s2016 sz | s |||| 0|eng d
020 |a 9783319414928  |9 978-3-319-41492-8 
024 7 |a 10.1007/978-3-319-41492-8  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Tayebi, Mohammad A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Social Network Analysis in Predictive Policing  |h [electronic resource] :  |b Concepts, Models and Methods /  |c by Mohammad A. Tayebi, Uwe Glässer. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XI, 133 p. 43 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Social Networks,  |x 2190-5436 
505 0 |a Introduction -- Social Network Analysis in Predictive Policing -- Structure of Co-offending Networks -- Organized Crime Group Detection -- Suspect Investigation -- Co-offence Prediction -- Personalized Crime Location Prediction -- Concluding remarks -- References. 
520 |a This book focuses on applications of social network analysis in predictive policing. Data science is used to identify potential criminal activity by analyzing the relationships between offenders to fully understand criminal collaboration patterns. Co-offending networks-networks of offenders who have committed crimes together-have long been recognized by law enforcement and intelligence agencies as a major factor in the design of crime prevention and intervention strategies. Despite the importance of co-offending network analysis for public safety, computational methods for analyzing large-scale criminal networks are rather premature. This book extensively and systematically studies co-offending network analysis as effective tool for predictive policing. The formal representation of criminological concepts presented here allow computer scientists to think about algorithmic and computational solutions to problems long discussed in the criminology literature. For each of the studied problems, we start with well-founded concepts and theories in criminology, then propose a computational method and finally provide a thorough experimental evaluation, along with a discussion of the results. In this way, the reader will be able to study the complete process of solving real-world multidisciplinary problems. 
650 0 |a Data mining. 
650 0 |a Criminology. 
650 0 |a Graph theory. 
650 0 |a Data protection. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Crime Control and Security. 
650 2 4 |a Graph Theory. 
650 2 4 |a Data and Information Security. 
700 1 |a Glässer, Uwe.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319414911 
776 0 8 |i Printed edition:  |z 9783319414935 
776 0 8 |i Printed edition:  |z 9783319823683 
830 0 |a Lecture Notes in Social Networks,  |x 2190-5436 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-41492-8  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)