Cargando…

Numerical Approximation of the Magnetoquasistatic Model with Uncertainties Applications in Magnet Design /

This book presents a comprehensive mathematical approach for solving stochastic magnetic field problems. It discusses variability in material properties and geometry, with an emphasis on the preservation of structural physical and mathematical properties. It especially addresses uncertainties in the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Römer, Ulrich (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Springer Theses, Recognizing Outstanding Ph.D. Research,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-41294-8
003 DE-He213
005 20220114124929.0
007 cr nn 008mamaa
008 160727s2016 sz | s |||| 0|eng d
020 |a 9783319412948  |9 978-3-319-41294-8 
024 7 |a 10.1007/978-3-319-41294-8  |2 doi 
050 4 |a TK5101-5105.9 
072 7 |a TJF  |2 bicssc 
072 7 |a TEC024000  |2 bisacsh 
072 7 |a TJF  |2 thema 
082 0 4 |a 621.3  |2 23 
100 1 |a Römer, Ulrich.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Numerical Approximation of the Magnetoquasistatic Model with Uncertainties  |h [electronic resource] :  |b Applications in Magnet Design /  |c by Ulrich Römer. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XXII, 114 p. 20 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 
505 0 |a Introduction -- Magnetoquasistatic Approximation of Maxwell's Equations, Uncertainty Quantification Principles -- Magnetoquasistatic Model and its Numerical Approximation -- Parametric Model, Continuity and First Order Sensitivity Analysis -- Uncertainty Quantification -- Uncertainty Quantification for Magnets -- Conclusion and Outlook. 
520 |a This book presents a comprehensive mathematical approach for solving stochastic magnetic field problems. It discusses variability in material properties and geometry, with an emphasis on the preservation of structural physical and mathematical properties. It especially addresses uncertainties in the computer simulation of magnetic fields originating from the manufacturing process. Uncertainties are quantified by approximating a stochastic reformulation of the governing partial differential equation, demonstrating how statistics of physical quantities of interest, such as Fourier harmonics in accelerator magnets, can be used to achieve robust designs. The book covers a number of key methods and results such as: a stochastic model of the geometry and material properties of magnetic devices based on measurement data; a detailed description of numerical algorithms based on sensitivities or on a higher-order collocation; an analysis of convergence and efficiency; and the application of the developed model and algorithms to uncertainty quantification in the complex magnet systems used in particle accelerators. . 
650 0 |a Telecommunication. 
650 0 |a Mechanics, Applied. 
650 0 |a Solids. 
650 0 |a Engineering design. 
650 0 |a Particle accelerators. 
650 1 4 |a Microwaves, RF Engineering and Optical Communications. 
650 2 4 |a Solid Mechanics. 
650 2 4 |a Engineering Design. 
650 2 4 |a Accelerator Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319412931 
776 0 8 |i Printed edition:  |z 9783319412955 
776 0 8 |i Printed edition:  |z 9783319823164 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-41294-8  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)