Cargando…

Statistical Causal Inferences and Their Applications in Public Health Research

This book compiles and presents new developments in statistical causal inference. The accompanying data and computer programs are publicly available so readers may replicate the model development and data analysis presented in each chapter. In this way, methodology is taught so that readers may impl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: He, Hua (Editor ), Wu, Pan (Editor ), Chen, Ding-Geng (Din) (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:ICSA Book Series in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-41259-7
003 DE-He213
005 20220117002847.0
007 cr nn 008mamaa
008 161026s2016 sz | s |||| 0|eng d
020 |a 9783319412597  |9 978-3-319-41259-7 
024 7 |a 10.1007/978-3-319-41259-7  |2 doi 
050 4 |a QH323.5 
072 7 |a PBT  |2 bicssc 
072 7 |a MED090000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 570.15195  |2 23 
245 1 0 |a Statistical Causal Inferences and Their Applications in Public Health Research  |h [electronic resource] /  |c edited by Hua He, Pan Wu, Ding-Geng (Din) Chen. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XV, 321 p. 24 illus., 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a ICSA Book Series in Statistics,  |x 2199-0999 
505 0 |a Part I. Overview -- 1. Causal Inference - A Statistical Paradigm for Inferring Causality -- Part II. Propensity Score Method for Causal Inference -- 2. Overview of Propensity Score Methods -- 3. Sufficient Covariate, Propensity Variable and Doubly Robust Estimation -- 4. A Robustness Index of Propensity Score Estimation to Uncontrolled Confounders -- 5. Missing Confounder Data in Propensity Score Methods for Causal Inference -- 6. Propensity Score Modeling & Evaluation -- 7. Overcoming the Computing Barriers in Statistical Causal Inference -- Part III. Causal Inference in Randomized Clinical Studies -- 8. Semiparametric Theory and Empirical Processes in Causal Inference -- 9. Structural Nested Models for Cluster-Randomized Trials -- 10. Causal Models for Randomized Trials with Continuous Compliance -- 11. Causal Ensembles for Evaluating the Effect of Delayed Switch to Second-line Antiretroviral Regimens -- 12. Structural Functional Response Models for Complex Intervention Trials -- Part IV. Structural Equation Models for Mediation Analysis -- 13.Identification of Causal Mediation Models with An Unobserved Pre-treatment Confounder -- 14. A Comparison of Potential Outcome Approaches for Assessing Causal Mediation -- 15. Causal Mediation Analysis Using Structure Equation Models. . 
520 |a This book compiles and presents new developments in statistical causal inference. The accompanying data and computer programs are publicly available so readers may replicate the model development and data analysis presented in each chapter. In this way, methodology is taught so that readers may implement it directly. The book brings together experts engaged in causal inference research to present and discuss recent issues in causal inference methodological development. This is also a timely look at causal inference applied to scenarios that range from clinical trials to mediation and public health research more broadly. In an academic setting, this book will serve as a reference and guide to a course in causal inference at the graduate level (Master's or Doctorate). It is particularly relevant for students pursuing degrees in Statistics, Biostatistics and Computational Biology. Researchers and data analysts in public health and biomedical research will also find this book to be an important reference. 
650 0 |a Biometry. 
650 0 |a Public health. 
650 1 4 |a Biostatistics. 
650 2 4 |a Public Health. 
700 1 |a He, Hua.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Wu, Pan.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Chen, Ding-Geng (Din).  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319412573 
776 0 8 |i Printed edition:  |z 9783319412580 
776 0 8 |i Printed edition:  |z 9783319823089 
830 0 |a ICSA Book Series in Statistics,  |x 2199-0999 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-41259-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)