Cargando…

Search and Optimization by Metaheuristics Techniques and Algorithms Inspired by Nature /

This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphas...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Du, Ke-Lin (Autor), Swamy, M. N. S. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-41192-7
003 DE-He213
005 20220118064611.0
007 cr nn 008mamaa
008 160720s2016 sz | s |||| 0|eng d
020 |a 9783319411927  |9 978-3-319-41192-7 
024 7 |a 10.1007/978-3-319-41192-7  |2 doi 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 003.3  |2 23 
100 1 |a Du, Ke-Lin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Search and Optimization by Metaheuristics  |h [electronic resource] :  |b Techniques and Algorithms Inspired by Nature /  |c by Ke-Lin Du, M. N. S. Swamy. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2016. 
300 |a XXI, 434 p. 68 illus., 40 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Introduction -- Simulated Annealing -- Optimization by Recurrent Neural Networks -- Genetic Algorithms and Genetic Programming -- Evolutionary Strategies -- Differential Evolution -- Estimation of Distribution Algorithms -- Mimetic Algorithms -- Topics in EAs -- Particle Swarm Optimization -- Artificial Immune Systems -- Ant Colony Optimization -- Tabu Search and Scatter Search -- Bee Metaheuristics -- Harmony Search -- Biomolecular Computing -- Quantum Computing -- Other Heuristics-Inspired Optimization Methods -- Dynamic, Multimodal, and Constraint-Satisfaction Optimizations -- Multiobjective Optimization -- Appendix 1: Discrete Benchmark Functions -- Appendix 2: Test Functions -- Index. 
520 |a This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computing, quantum computing, and many others. General topics on dynamic, multimodal, constrained, and multiobjective optimizations are also described. Each chapter includes detailed flowcharts that illustrate specific algorithms and exercises that reinforce important topics. Introduced in the appendix are some benchmarks for the evaluation of metaheuristics. Search and Optimization by Metaheuristics is intended primarily as a textbook for graduate and advanced undergraduate students specializing in engineering and computer science. It will also serve as a valuable resource for scientists and researchers working in these areas, as well as those who are interested in search and optimization methods. 
650 0 |a Mathematics-Data processing. 
650 0 |a Algorithms. 
650 0 |a Mathematical optimization. 
650 0 |a Computer simulation. 
650 0 |a Computational intelligence. 
650 1 4 |a Computational Science and Engineering. 
650 2 4 |a Algorithms. 
650 2 4 |a Optimization. 
650 2 4 |a Computer Modelling. 
650 2 4 |a Computational Intelligence. 
700 1 |a Swamy, M. N. S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319411910 
776 0 8 |i Printed edition:  |z 9783319411934 
776 0 8 |i Printed edition:  |z 9783319822907 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-41192-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)