Cargando…

Support Vector Machines and Perceptrons Learning, Optimization, Classification, and Application to Social Networks /

This work reviews the state of the art in SVM and perceptron classifiers. A Support Vector Machine (SVM) is easily the most popular tool for dealing with a variety of machine-learning tasks, including classification. SVMs are associated with maximizing the margin between two classes. The concerned o...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Murty, M.N (Autor), Raghava, Rashmi (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:SpringerBriefs in Computer Science,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-41063-0
003 DE-He213
005 20220116115913.0
007 cr nn 008mamaa
008 160816s2016 sz | s |||| 0|eng d
020 |a 9783319410630  |9 978-3-319-41063-0 
024 7 |a 10.1007/978-3-319-41063-0  |2 doi 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQP  |2 thema 
082 0 4 |a 006.4  |2 23 
100 1 |a Murty, M.N.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Support Vector Machines and Perceptrons  |h [electronic resource] :  |b Learning, Optimization, Classification, and Application to Social Networks /  |c by M.N. Murty, Rashmi Raghava. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XIII, 95 p. 25 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5776 
520 |a This work reviews the state of the art in SVM and perceptron classifiers. A Support Vector Machine (SVM) is easily the most popular tool for dealing with a variety of machine-learning tasks, including classification. SVMs are associated with maximizing the margin between two classes. The concerned optimization problem is a convex optimization guaranteeing a globally optimal solution. The weight vector associated with SVM is obtained by a linear combination of some of the boundary and noisy vectors. Further, when the data are not linearly separable, tuning the coefficient of the regularization term becomes crucial. Even though SVMs have popularized the kernel trick, in most of the practical applications that are high-dimensional, linear SVMs are popularly used. The text examines applications to social and information networks. The work also discusses another popular linear classifier, the perceptron, and compares its performance with that of the SVM in different application areas.>. 
650 0 |a Pattern recognition systems. 
650 0 |a Data mining. 
650 0 |a Algorithms. 
650 0 |a Social sciences-Data processing. 
650 0 |a Electronic digital computers-Evaluation. 
650 1 4 |a Automated Pattern Recognition. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Algorithms. 
650 2 4 |a Computer Application in Social and Behavioral Sciences. 
650 2 4 |a System Performance and Evaluation. 
700 1 |a Raghava, Rashmi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319410623 
776 0 8 |i Printed edition:  |z 9783319410647 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5776 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-41063-0  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)