Cargando…

Logical Studies of Paraconsistent Reasoning in Science and Mathematics

This book covers work written by leading scholars from different schools within the research area of paraconsistency. The authors critically investigate how contemporary paraconsistent logics can be used to better understand human reasoning in science and mathematics. Offering a variety of perspecti...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Andreas, Holger (Editor ), Verdée, Peter (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Trends in Logic, Studia Logica Library, 45
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Chapter 1. Inconsistent Thinking, Fast and Slow; Francesco Berto
  • Chapter 2. Recursive functions for paraconsistent reasoners; Zach Weber
  • Chapter 3. Instantaneous Contradiction in Motion and Perception: Modeling the Phenomenal Present with a Dialetheic Logic of Time; Corry Shores
  • Chapter 4. Saving Proof from Paradox: Against the Inconsistency of Informal Mathematics; Fenner Tanswell.-Chapter 5. Revenge for Berto's Law of Non-Contradiction; Diego Tajer
  • Chapter 6. On Coherence and Inconsistency; Martin Pleitz
  • Chapter 7. On the Preservation of Reliability; Bryson Brown
  • Chapter 8. Inconsistency Handling in the Sciences: Where and How do we Need Paraconsistency?; Joke Meheus
  • Chapter 9. Revision-Theoretic Truth and Degrees of Paradoxicality; Cian Chartier
  • Chapter 10. Inconsistent Scientific Theories: A Framework; Otavio Bueno
  • Chapter 11. Prospects for triviality; Luis Estrada Gonzáles
  • Chapter 12. On the interpretation of classical mathematics in naïve set theory; Morgan Thomas
  • Chapter 13. Doing Mathematics Paraconsistently. A manifesto.; Maarten McKubre-Jordens
  • Chapter 14. Why designate gluts?; Andreas Kapsner
  • Chapter 15. On the methodology of paraconsistent logic; Heinrich Wansing and Sergei Odintsov
  • Chapter 16. Dynamic proofs for networks of partial structures; Holger Andres and Peter Verdée.