Cargando…

The SenticNet Sentiment Lexicon: Exploring Semantic Richness in Multi-Word Concepts

The research and its outcomes presented in this book, is about lexicon-based sentiment analysis. It uses single-, and multi-word concepts from the SenticNet sentiment lexicon as the source of sentiment information for the purpose of sentiment classification. In 6 chapters the book sheds light on the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Biagioni, Raoul (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:SpringerBriefs in Cognitive Computation, 4
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-38971-4
003 DE-He213
005 20220117011011.0
007 cr nn 008mamaa
008 160528s2016 sz | s |||| 0|eng d
020 |a 9783319389714  |9 978-3-319-38971-4 
024 7 |a 10.1007/978-3-319-38971-4  |2 doi 
050 4 |a RC321-580 
072 7 |a PSAN  |2 bicssc 
072 7 |a MED057000  |2 bisacsh 
072 7 |a PSAN  |2 thema 
082 0 4 |a 612.8  |2 23 
100 1 |a Biagioni, Raoul.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The SenticNet Sentiment Lexicon: Exploring Semantic Richness in Multi-Word Concepts  |h [electronic resource] /  |c by Raoul Biagioni. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a VI, 55 p. 13 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Cognitive Computation,  |x 2212-6031 ;  |v 4 
505 0 |a Introduction -- Sentiment Analysis -- SenticNet -- Unsupervised Sentiment Classification -- Evaluation -- Conclusion -- Index. . 
520 |a The research and its outcomes presented in this book, is about lexicon-based sentiment analysis. It uses single-, and multi-word concepts from the SenticNet sentiment lexicon as the source of sentiment information for the purpose of sentiment classification. In 6 chapters the book sheds light on the comparison of sentiment classification accuracy between single-word and multi-word concepts, for which a bespoke sentiment analysis system developed by the author was used. This book will be of interest to students, educators and researchers in the field of Sentic Computing. 
650 0 |a Neurosciences. 
650 0 |a Natural language processing (Computer science). 
650 0 |a Semiotics. 
650 1 4 |a Neuroscience. 
650 2 4 |a Natural Language Processing (NLP). 
650 2 4 |a Semiotics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319389707 
776 0 8 |i Printed edition:  |z 9783319389721 
830 0 |a SpringerBriefs in Cognitive Computation,  |x 2212-6031 ;  |v 4 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-38971-4  |z Texto Completo 
912 |a ZDB-2-SBL 
912 |a ZDB-2-SXB 
950 |a Biomedical and Life Sciences (SpringerNature-11642) 
950 |a Biomedical and Life Sciences (R0) (SpringerNature-43708)