Spectral Theory of Infinite-Area Hyperbolic Surfaces
This text introduces geometric spectral theory in the context of infinite-area Riemann surfaces, providing a comprehensive account of the most recent developments in the field. For the second edition the context has been extended to general surfaces with hyperbolic ends, which provides a natural set...
| Clasificación: | Libro Electrónico |
|---|---|
| Autor principal: | |
| Autor Corporativo: | |
| Formato: | Electrónico eBook |
| Idioma: | Inglés |
| Publicado: |
Cham :
Springer International Publishing : Imprint: Birkhäuser,
2016.
|
| Edición: | 2nd ed. 2016. |
| Colección: | Progress in Mathematics,
318 |
| Temas: | |
| Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Introduction
- Hyperbolic Surfaces
- Selberg Theory for Finite-Area Hyperbolic Surfaces
- Spectral Theory for the Hyperbolic Plane
- Model Resolvents for Cylinders
- The Resolvent
- Spectral and Scattering Theory
- Resonances and Scattering Poles
- Growth Estimates and Resonance Bounds
- Selberg Zeta Function
- Wave Trace and Poisson Formula
- Resonance Asymptotics
- Inverse Spectral Geometry
- Patterson-Sullivan Theory
- Dynamical Approach to the Zeta Function
- Numerical Computations
- Appendix
- References
- Notation Guide
- Index.


