Cargando…

Multimodal Computational Attention for Scene Understanding and Robotics

This book presents state-of-the-art computational attention models that have been successfully tested in diverse application areas and can build the foundation for artificial systems to efficiently explore, analyze, and understand natural scenes. It gives a comprehensive overview of the most recent...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Schauerte, Boris (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Cognitive Systems Monographs, 30
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-33796-8
003 DE-He213
005 20220115211850.0
007 cr nn 008mamaa
008 160511s2016 sz | s |||| 0|eng d
020 |a 9783319337968  |9 978-3-319-33796-8 
024 7 |a 10.1007/978-3-319-33796-8  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Schauerte, Boris.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Multimodal Computational Attention for Scene Understanding and Robotics  |h [electronic resource] /  |c by Boris Schauerte. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XXIV, 203 p. 55 illus., 51 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Cognitive Systems Monographs,  |x 1867-4933 ;  |v 30 
505 0 |a Introduction -- Background -- Bottom-up Audio-Visual Attention for Scene Exploration -- Multimodal Attention with Top-Down Guidance -- Conclusion -- Applications -- Dataset Overview. 
520 |a This book presents state-of-the-art computational attention models that have been successfully tested in diverse application areas and can build the foundation for artificial systems to efficiently explore, analyze, and understand natural scenes. It gives a comprehensive overview of the most recent computational attention models for processing visual and acoustic input. It covers the biological background of visual and auditory attention, as well as bottom-up and top-down attentional mechanisms and discusses various applications. In the first part new approaches for bottom-up visual and acoustic saliency models are presented and applied to the task of audio-visual scene exploration of a robot. In the second part the influence of top-down cues for attention modeling is investigated. . 
650 0 |a Computational intelligence. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a Artificial intelligence. 
650 0 |a Computer vision. 
650 0 |a Pattern recognition systems. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Control, Robotics, Automation. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Computer Vision. 
650 2 4 |a Automated Pattern Recognition. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319337944 
776 0 8 |i Printed edition:  |z 9783319337951 
776 0 8 |i Printed edition:  |z 9783319816050 
830 0 |a Cognitive Systems Monographs,  |x 1867-4933 ;  |v 30 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-33796-8  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)