Cargando…

Computer Vision Metrics Textbook Edition /

Based on the successful 2014 book published by Apress, this textbook edition is expanded to provide a comprehensive history and state-of-the-art survey for fundamental computer vision methods and deep learning. With over 800 essential references, as well as chapter-by-chapter learning assignments, b...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Krig, Scott (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-33762-3
003 DE-He213
005 20220113032843.0
007 cr nn 008mamaa
008 160916s2016 sz | s |||| 0|eng d
020 |a 9783319337623  |9 978-3-319-33762-3 
024 7 |a 10.1007/978-3-319-33762-3  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Krig, Scott.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Computer Vision Metrics  |h [electronic resource] :  |b Textbook Edition /  |c by Scott Krig. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XVIII, 637 p. 331 illus., 139 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Image Capture and Representation -- Image Re-processing -- Global and Regional Features -- Local Feature Design Concepts -- Taxonomy of Feature Description Attributes -- Interest Point Detector and Feature Descriptor Survey -- Ground Truth Data, Content, Metrics, and Analysis -- Vision Pipeline and Optimizations -- Feature Learning Architecture Taxonomy and Neuroscience Background -- Feature Learning and Deep Learning Architecture Survey.   . 
520 |a Based on the successful 2014 book published by Apress, this textbook edition is expanded to provide a comprehensive history and state-of-the-art survey for fundamental computer vision methods and deep learning. With over 800 essential references, as well as chapter-by-chapter learning assignments, both students and researchers can dig deeper into core computer vision topics and deep learning architectures. The survey covers everything from feature descriptors, regional and global feature metrics, feature learning architectures, deep learning, neuroscience of vision, neural networks, and detailed example architectures to illustrate computer vision hardware and software optimization methods.  To complement the survey, the textbook includes useful analyses which provide insight into the goals of various methods, why they work, and how they may be optimized. The text delivers an essential survey and a valuable taxonomy, thus providing a key learning tool for students, researchers and engineers, to supplement the many effective hands-on resources and open source projects, such as OpenCV and other imaging and deep learning tools. 
650 0 |a Artificial intelligence. 
650 0 |a Data mining. 
650 0 |a Signal processing. 
650 0 |a Computational intelligence. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Computational Intelligence. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319337616 
776 0 8 |i Printed edition:  |z 9783319337630 
776 0 8 |i Printed edition:  |z 9783319815954 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-33762-3  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)