Cargando…

Machine Learning for Evolution Strategies

This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kramer, Oliver (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:Studies in Big Data, 20
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-33383-0
003 DE-He213
005 20220116104823.0
007 cr nn 008mamaa
008 160525s2016 sz | s |||| 0|eng d
020 |a 9783319333830  |9 978-3-319-33383-0 
024 7 |a 10.1007/978-3-319-33383-0  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Kramer, Oliver.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Machine Learning for Evolution Strategies  |h [electronic resource] /  |c by Oliver Kramer. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a IX, 124 p. 38 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Big Data,  |x 2197-6511 ;  |v 20 
505 0 |a Part I Evolution Strategies -- Part II Machine Learning -- Part III Supervised Learning. 
520 |a This book introduces numerous algorithmic hybridizations between both worlds that show how machine learning can improve and support evolution strategies. The set of methods comprises covariance matrix estimation, meta-modeling of fitness and constraint functions, dimensionality reduction for search and visualization of high-dimensional optimization processes, and clustering-based niching. After giving an introduction to evolution strategies and machine learning, the book builds the bridge between both worlds with an algorithmic and experimental perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python using the machine learning library scikit-learn. The examples are conducted on typical benchmark problems illustrating algorithmic concepts and their experimental behavior. The book closes with a discussion of related lines of research. 
650 0 |a Computational intelligence. 
650 0 |a Computer simulation. 
650 0 |a Data mining. 
650 0 |a System theory. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Computer Modelling. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Complex Systems. 
650 2 4 |a Artificial Intelligence. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319333816 
776 0 8 |i Printed edition:  |z 9783319333823 
776 0 8 |i Printed edition:  |z 9783319815008 
830 0 |a Studies in Big Data,  |x 2197-6511 ;  |v 20 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-33383-0  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)