Cargando…

Robustness Analysis in Decision Aiding, Optimization, and Analytics

This book provides a broad coverage of the recent advances in robustness analysis in decision aiding, optimization, and analytics. It offers a comprehensive illustration of the challenges that robustness raises in different operations research and management science (OR/MS) contexts and the methodol...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Doumpos, Michael (Editor ), Zopounidis, Constantin (Editor ), Grigoroudis, Evangelos (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2016.
Edición:1st ed. 2016.
Colección:International Series in Operations Research & Management Science, 241
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-33121-8
003 DE-He213
005 20220115205612.0
007 cr nn 008mamaa
008 160712s2016 sz | s |||| 0|eng d
020 |a 9783319331218  |9 978-3-319-33121-8 
024 7 |a 10.1007/978-3-319-33121-8  |2 doi 
050 4 |a T57.6-.97 
072 7 |a KJT  |2 bicssc 
072 7 |a KJMD  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
072 7 |a KJT  |2 thema 
072 7 |a KJMD  |2 thema 
082 0 4 |a 658.403  |2 23 
245 1 0 |a Robustness Analysis in Decision Aiding, Optimization, and Analytics  |h [electronic resource] /  |c edited by Michael Doumpos, Constantin Zopounidis, Evangelos Grigoroudis. 
250 |a 1st ed. 2016. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2016. 
300 |a XXI, 321 p. 65 illus., 27 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a International Series in Operations Research & Management Science,  |x 2214-7934 ;  |v 241 
505 0 |a SMAA in Robustness Analysis -- Data-driven Robustness Analysis for Multicriteria Classification Problems Using Preference Disaggregation Approaches -- Robustness for Adversarial Risk Analysis -- From Statistical Decision Theory to Robust Optimization: A Maximin Perspective on Robust Decision-Making -- The State of Robust Optimization -- Robust Discrete Optimization under Discrete and Interval Uncertainty - A Survey -- Performance Analysis in Robust Optimization -- Robust-Soft Solutions in Linear Optimization Problems with Fuzzy Parameters -- Robust Machine Scheduling Based on Group of Permutable Jobs -- How Robust is a Robust Policy? Comparing Alternative Robustness Metrics for Robust Decision-making -- Developing Robust Climate Policies: A Fuzzy Cognitive Map Approach -- Robust Optimization Approaches to Single Period Portfolio Allocation Problem -- Portfolio Optimization with Second-Order Stochastic Dominance Constraints and Portfolios Dominating Indices -- Robust DEA Approaches to Performance Evaluation of Olive Oil Production under Uncertainty. . 
520 |a This book provides a broad coverage of the recent advances in robustness analysis in decision aiding, optimization, and analytics. It offers a comprehensive illustration of the challenges that robustness raises in different operations research and management science (OR/MS) contexts and the methodologies proposed from multiple perspectives. Aside from covering recent methodological developments, this volume also features applications of robust techniques in engineering and management, thus illustrating the robustness issues raised in real-world problems and their resolution within advances in OR/MS methodologies. Robustness analysis seeks to address issues by promoting solutions, which are acceptable under a wide set of hypotheses, assumptions and estimates. In OR/MS, robustness has been mostly viewed in the context of optimization under uncertainty. Several scholars, however, have emphasized the multiple facets of robustness analysis in a broader OR/MS perspective that goes beyond the traditional framework, seeking to cover the decision support nature of OR/MS methodologies as well. As new challenges emerge in a "big-data'" era, where the information volume, speed of flow, and complexity increase rapidly, and analytics play a fundamental role for strategic and operational decision-making at a global level, robustness issues such as the ones covered in this book become more relevant than ever for providing sound decision support through more powerful analytic tools. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 1 4 |a Operations Research and Decision Theory. 
650 2 4 |a Operations Research, Management Science . 
700 1 |a Doumpos, Michael.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Zopounidis, Constantin.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Grigoroudis, Evangelos.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319331195 
776 0 8 |i Printed edition:  |z 9783319331201 
776 0 8 |i Printed edition:  |z 9783319814322 
830 0 |a International Series in Operations Research & Management Science,  |x 2214-7934 ;  |v 241 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-33121-8  |z Texto Completo 
912 |a ZDB-2-BUM 
912 |a ZDB-2-SXBM 
950 |a Business and Management (SpringerNature-41169) 
950 |a Business and Management (R0) (SpringerNature-43719)